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Preface

Since the publication of my lecture notes, Functional Differential Equations
in the Applied Mathematical Sciences series, many new developments have
occurred. As a consequence, it was decided not to make a few corrections and
additions for a second edition of those notes, but to present a more compre-
hensive theory. The present work attempts to consolidate those elements of
the theory which have stabilized and also to include recent directions of
research.

The following chapters were not discussed in my original notes. Chapter 1
is an elementary presentation of linear differential difference equations with
constant coefficients of retarded and neutral type. Chapter 4 develops the
recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed
systems. Chapter 11 is a new presentation incorporating recent results on the
existence of periodic solutions of autonomous equations. Chapter 12 is
devoted entirely to neutral equations. Chapter 13 gives an introduction to the
global and generic theory. There is also an appendix on the location of the
zeros of characteristic polynomials.

The remainder of the material has been completely revised and updated
with the most significant changes occurring in Chapter 3 on the properties of
solutions, Chapter 5 on stability, and Chapter 10 on behavior near a periodic
orbit.

It is impossible to thank individually by name all my friends, colleagues,
and students who have helped me over the years to understand something
about functional differential equations. Each of these persons will recognize
their influence on the presentation. However, Chapter 13 on the global theory
could not have been written without the special assistance given by John
Mallet-Paret and Waldyr Oliva. To Pedro Martinez-Amores, I also owe a
special thanks for his reading of the original manuscript. His criticisms and

\%



Preface

constructive comments led to a much better presentation. In the final pre-
paration of the manuscript, Sandra Spinacci went far beyond the call of duty,
working incessantly and under very strained conditions. I also thank Eleanor
Addison for her work on the drawings. For a careful reading of the galley
proofs, I am indebted to P. Lima, H. Rodrigues, and P. Téboas. Finally, it
was a pleasure to work with the professional staff of Springer-Verlag,
especially Elizabeth Kaplan.

Jack K. Hale

Brown University
June, 1976
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Introduction

In many applications, one assumes the system under consideration is
governed by a principle of causality; that is, the future state of the system
is independent of the past states and is determined solely by the present.
If it is also assumed that the system is governed by an equation involving the
state and rate of change of the state, then, generally, one is considering either
ordinary or partial differential equations. However, under closer scrutiny,
it becomes apparent that the principle of causality is often only a first
approximation to the true situation and that a more realistic model would
include some of the past states of the system. Also, in some problems it is
meaningless not to have dependence on the past. This has been known for
some time, but the theory for such systems has been extensively developed
only recently. In fact, until the time of Volterra [1] most of the results ob-
tained during the previous 150 years were concerned with special properties
for very special equations. There were some very interesting developments
concerning the closure of the set of exponential solutions of linear equations
and the expansion of solutions in terms of these special solutions. On the other
hand, there seemed to be little concern about a qualitative theory in the same
spirit as for ordinary differential equations.

In his research on predator—prey models and viscoelasticity, Volterra
[1,2] formulated some rather general differential equations incorporating
the past states of the system. Also, because of the close connection between
the equations and specific physical systems, Volterra attempted to introduce
a concept of energy function for these models. He then exploited the behavior
of this energy function to study the asymptotic behavior of the system in the
distant future. These beautiful papers were almost completely ignored by
other workers in the field and therefore did not have much immediate
impact.
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In the late thirties and early forties, Minorsky [1], in his study of ship
stabilization and automatic steering, pointed out very clearly the importance
of the consideration of the delay in the feedback mechanism. The great
interest in control theory during these and later years has certainly contributed
significantly to the rapid development of the theory of differential equations
with dependence on the past state.

In the late forties and early fifties, a few books appeared which presented
the current status of the subject and certainly greatly influenced later
developments. In his book, Mishkis [ 1] introduced a general class of equations
with delayed arguments and laid the foundation for a general theory of
linear systems. In their monograph at the Rand Corporation, Bellman and
Danskin [1] pointed out the diverse applications of equations containing
past information to other areas such as biology and economics. They also
presented a well organized theory of linear equations with constant co-
efficients and the beginnings of stability theory. A more extensive develop-
ment of these ideas is in the book of Bellman and Cooke [1]. In his book on
stability theory, Krasovskii [ 1] presented the theory of Liapunov functionals
emphasizing the important fact that some problems in such systems are
more meaningful and amenable to solution if one considers the motion in a
function space even though the state variable is a finite-dimensional
vector.

With such clear indications of the importance of these systems in the
applications and also with the number of interesting mathematical problems
involved, it is not surprising that the subject has undergone a rapid develop-
ment in the last twenty five years. New applications also continue to arise
and require modifications of even the definition of the basic equations. We
list below a few types of equations that have been encountered merely to give
an idea of the diversity and give appropriate references for the specific
application.

The simplest type of past dependence in a differential equation is that in
which the past dependence is through the state variable and not the deriva-
tive of the state variable, the so-called retarded functional differential
equations or retarded differential difference equations. For a discussion of
the physical applications of the differential difference equation

_dx

X(t) = F(t, x(t), x(t — r)) X = o

to control problems, see Minorsky [2, Ch. 21]. Lord Cherwell (see Wright
[1, 2]) has encountered the differential difference equation

X(t) = —ax(t — [T + x(1)]

in his study of the distribution of primes. Variants of this equation have
also been used as models in the theory of growth of a single species (see
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Cunningham [1]). Dunkel [1] suggested the more general equation
0
x(1) = —a[f x(t + 0)(1!7(0):'[1 + x(1)]
=1

for the growth of a single species.
In his study of predator-prey models, Volterra [1] had earlier investi-
gated the equations

0
X(r) = I:E, — y(t) — f F,(0)y(t + 9)d0} x(r)

0
Wt) = [—el + vy, x(t) + f F,(0)x(r + 9)d9] W)

where x and y are the number of prey and predators, respectively, and all
constants and functions are non-negative. For similar models, Wangersky
and Cunningham [1, 2], have also used the equations

%(1) = ax(r)[ — “)] — b))

y(t) = —By(t) + ex(t — r)y(t —r)

for predator—prey models.
In an attempt to explain the circummutation of plants (and especially
the sunflower), Israelson and Johnsson [1, 2] have used the equation

ot) = —k Jmf(ﬂ)sin alt — 0 — ty)d6
1

as a model, where a is the angle the top of the plant makes with the vertical
(see also Klein [1]). For other applications, see Johnson and Karlsson [1].
Under suitable assumptions, the equation

N
X(t) = ZA x(t —

is a suitable model for describing the mixing of a dye from a central tank as
dyed water circulates through a number of pipes. An application to the
distribution in man of labeled albumin as it circulates from the blood stream
through the interstitial fluids and back to the blood stream is discussed by
Bailey and Reeve [1] (see also Bailey and Williams [1]). Boffi and Scozzafava
[1, 2] have also encountered this equation in transport problems.

In an attempt ‘to describe the spread of measles in a metropolitan area,
London and Yorke [1] have encountered the equation

S(t) = —BOSE)[2y + St — 14) — St — 12)] + y

where S(t) is the number of susceptible individuals at time t, y is the rate at
which individuals enter the population, (1) is a function characteristic of the

3
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population, and an individual exposed at time ¢ is infectious in the time
interval [t — 14,1 — 12].

In an analysis of gonorrhea, Cooke and Yorke [1] have studied the

equation

I(t) = gt — Ly) — gt — L))
where I represents the number of infectious individuals and g is a non-
negative function vanishing outside a compact interval.

A more general equation describing the spread of disease taking into
account age dependence was given by Cooke [1] and Hoppenstadt and
Waltman [1]. For other equations that occur in the theory of epidemics,
see Waltman [ 1]. For other models in the biomedical sciences, see Banks [1].
Grossberg [1,2] has encountered interesting differential equations in the
theory of learning.

The equation

X(t) = — f a(t — u)g(x(u))du

was encountered by Ergen [1] in the theory of a circulating fuel nuclear
reactor and has been extensively studied by Levin and Nohel [1]. In this
model, x is the neutron density. It is also a good model in one-dimensional
viscoelasticity in which x is the strain and a is the relaxation function.

Taking into account the transmission time in the triode oscillator,
Rubanik [1, p. 130] has encountered the van der Pol equation

X(t) + oxX(t) — f(x(t = r)X(t —r) + x(t) =0

with the delayed argument r. Taking into account the retarded connections
between oscillating systems, Starik [1] has encountered the system

() + [w? + eisin @t — r)]v(t) = —e[hy(t) + 7y — ry)]
19(1) = e[L(P(1)) — Ho(t) — a,2y2(t — r3)cos ¢(t)
— 0, sin ¢(r) — a5 cos P(1)].

In the theory of optimal control, Krasovskii [2] has studied extensively
the system

X(1) = P(0)x(t) + Bt)u(t)
wt) = Q(o)x(1)
0 0
u(t) = f [don(t, O)]y(r + 0) + f [dgu(t, O0)Ju(t + 0).
There are also a number of applications in which the delayed argument
occurs in the derivative of the state variable as well as in the independent
variable, the so-called neutral differential difference equations. Such problems

are more difficult to motivate but often arise in the study of two or more
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simple oscillatory systems with some interconnections between them. For
simplicity, it is usually assumed that the interaction of the components of
the coupled systems takes place immediately. In many cases, the time for the
interaction to take place is important even in determining the qualitative
behavior of the system. It often occurs that the connection between the
coupled systems can be adequately described by a system of linear hyperbolic
partial differential equations with the motion of each individual system being
described by a boundary condition. In some cases, the connection through
the partial differential equations (considered as a connection by a traveling
wave) can be replaced by connections with delays. Generally, the resulting
ordinary differential equations involve delays in the highest order derivatives.
A general discussion of when this process is valid may be found in Rubanik
[1] and Cooke and Krumme [1].

For example, Brayton [1] considered the lossless transmission line con-
nected as shown in Figure I.1, where g(v) is a nonlinear function of v and gives
the current in the indicated box in the direction shown. This problem may be
described by the following system of partial differential equations

i cv cv Ci
L—=——, C—=— —, 0<x<1lLit>0,
ot ox ct ox

with the boundary conditions

do(1,t)
dt
We now indicate how one can transform this problem into a differential

equation with delays. If s = (LC)""'? and z = (L/C)"/%, then the general
solution of the partial differential equation is

v(x, 1) = ¢(x — st) + Y(x + st)

E — v0,t) — Ri0,1) =0, C,

= i1, t) — glu(1, t)).

i(x, 1) = {[d)(x — st) — Y(x + st)]
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or
2¢(x — st) = v(x, t) + zi(x, t)

2Y(x + st) = v(x, t) — zi(x, t).

2¢(—st) = v<1,t + l) + zi(],t + l)
S S
2¥(st) = U(l.t — l) — zi<1,t — 1)
S S

Using these expressions in the general solution and using the first boundary
condition at t — (1/s), one obtains

2 1 K 2
i(1,1) — Ki(l,t — —) =o——v(l,t) — -v<1,r — —>
s z Z S

where K = (z — R)/(z + R), « = 2E/(z + R). Inserting the second boundary
condition and letting u(t) = v(1, t), we obtain the equation

u(t) - Ku<r —~ %) - f(u(t), u<t - §>>
where s = \/LC,
1

€ f0 e = r) = 2~ ul) ~ éu(r — 1) — glue) + K glult — ),

This implies

all constants are positive and depend on the parameters in the original
equations. Also, if R > 0, then K < 1.

If generalized solutions of the original partial differential equation were
considered, the delay equation would require differentiating the difference
u(t) — Ku(t — (2/s)) rather than each term separately; that is, one would
consider the equation

oo - s -2)] - s{uosls - )

The prescription for passing from a linear partial differential equation with
nonlinear boundary conditions to a delay equation is certainly not unique
and other transformations may be desirable in certain situations. This fact
is illustrated following the ideas of Lopes [1]. Let |K| < 1 (i.e., R > 0) and
let p be any solution of the difference equation

p(t) — Kp<t - %) = —b(t), b(t) = zE<r - é)/(z + R)

If E is periodic, one can choose p periodic with the same period. Using the
first boundary condition at t — (1/s) and the general solution, one obtains

o(1 — st) = b(t) — Ky(st — 1).
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If w(t) = Y(1 + st) — p(t), then evaluation in the general solution gives

v(1,1) = w(t) — Kw(t —r)
i(l,t) = —]Ew(t) — gw(t —r)+q

where r = 2/s, zq(t) = —p(t) — Kp(t — r) + b(t). Using the second boundary
condition one obtains the equation

/ I K
& i [wlt) — Kwlt = )] =¢ — —w(t) = — wlt —r) — glwlt) = Kw(t — 1))

In his consideration of shunted transmission lines, Lopes [2] encountered
equations of the above type with two delays.

Sometimes boundary control of a linear hyperbolic equation can be more
effectively studied by investigating the corresponding control problem for
the above transformed equations (see Banks and Kent [1]).

Another similar equation encountered by Rubanik [1] in his study of
vibrating masses attached to an elastic bar is

X(1) + @, 2x(t) = ef |(x(1), X(r). y(1), ¥(1)) + 7,5(t — 1)
F(t) + w2 (1) = efy(x(0), X(0), y(e), (1) + 7, %(t — r)

In studying the collision problem in electrodynamics, Driver [1] con-
sidered systems of the type

X(1) = file, x(1), x(g(1) + fa(t, x(1), x(g(1))x(g(1)

where g(1) < t. In the same problem, one encounters delays g which depend
also upon x.

El'sgol'tz [1,2], Sabbagh [1], and Hughes [1] have considered the
variational problem of minimizing

1
V(x) = f F(t, x(t), x(t — r), X(r), X(t — r))dt
0
over some class of functions x. Generally, the Euler equations are of the form
X(t) = f(t, x(t), x(r = r), X(¢), X(t — 1), X(t — 1))

with some appropriate boundary conditions.
In the slowing down of neutrons in a nuclear reactor, the asymptotic
behavior as t — oo of the equation

t+1
x(t) = J k(s)x(s)ds

or

X(t) = k(t + Dx(r + 1) — k(t)x(¢)



