—

ELEMENTARY DATA STRUCTURES
WITH PASCAL

- ANGELA B. SHIFLET



smentary Data Structures
~ with
~ \PASCAL/

ANGELA B. SHIFLET

WOFFORD COLLEGE

West Publishing Company

ST. PAUL - NEW YORK - LOS ANGELES - SAN FRANCISCO



Production Credits
Copyedit: Sheryl Rose
Text design: Paula Schlosser
Composition: G& S Typesetters, Inc.
Text art: G& S Typesetters, Inc.
Cover photo: Michel Tcherevkoff/The Image Bank

COPYRIGHT ©1990 By WEST PUBLISHING COMPANY
50 W. Kellogg Boulevard
P.O. Box 64526
St. Paul, MN 55164-1003

All rights reserved

Printed in the United States of America

97 96 95 94 93 92 91 90 8 76 5 43 2 10
Library of Congress Cataloging-in-Publication Data

Shiflet, Angela B.
Elementary data structures with Pascal / Angela B. Shiflet.
p. cm.
ISBN 0-314-66780-6
1. Pascal (Computer program language) 2. Data structures (Computer science)
QA76.73.P25524 1990
005.13'3—dc20

I. Title.

89-29442
CIp

©



Elementary Data Structures
with

PASCAL/



Dedicated to
my husband,
George,
and my parents,
Isabell and Carroll Buzzett



PREFACE

lementary Data Structures with Pascal introduces the CS2 or elementary

data structures student to the subject in a clear, visual, top-down manner.
The text first presents each data structure as an abstract data type (ADT), or a
set of data objects and fundamental operations on this set. The use of boldface
type emphasizes changes in the structures and the values of the variables. En-
glish descriptions and accompanying diagrams, give the student a visual con-
cept of the data structure.

Applications are then developed using pseudocode and ADT operations,
often with diagrams to clarify the words of the algorithms. By first considering
data structures on a high level without concern for the implementation details,
the student obtains a powerful tool which simplifies the process of handling
data and extends naturally the concept of structured programming. One of the
major goals of data abstraction is to encapsulate the structure so that details of
implementation are hidden from the user. With such information hidden, the
programmer can consider applications on a higher plane with major opera-
tions as opposed to on a lower level where there is the very real danger of be-
coming lost in a sea of details.

After studying and using the data structure on the abstract data type level,
the text examines how the structure is represented and how the operations can
be written in Standard Pascal. Appendix B covers important extensions in Turbo
Pascal and UCSD Pascal. Often, there are several ways to implement a particu-
lar ADT. Advantages and disadvantages of these implementations and the cir-
cumstances which make one more desirable than another are also discussed.

For the convenience of the instructor, a disk is available with Standard Pas-
cal implementations of the abstract data types. Use of these files saves time in
designing, coding, typing, and testing the Pascal implementations of the ab-
stract data types. This disk, which is described in greater detail under Supple-
mentary Materials, may be copied freely for the students.

The text presents many applications in examples, exercises, and program-

Xi



Xii > Preface

ming projects. Each section has a number of exercises with answers to selected
problems with italicized numbers in Appendix D. Among other features de-
scribed below, the Instructor’s Manual contains answers to all of the remaining
exercises. Pascal code in the text, the Instructor’s Manual, and on the disk of
ADT implementations have been computer tested.

A chapter-by-chapter description of the organization of the text and a
more detailed description of learning features follows.

Qrganization

Chapter 1

Sections 1.1 through 1.3 examine the process of developing quality software.
These sections provide a good review and enhancement of the programming
principles covered in the prerequisite course of Pascal programming. Early dis-
cussion of analysis of algorithms (Section 1.4) provides a measure of the effi-
ciency of algorithms to be used throughout the text.

Chapter 2

Recursion is covered early (Section 2.1) in the text. Thus, this powerful tech-
nique is employed in the development of a number of procedures and func-
tions. Section 2.2 compares recursion and iteration and discusses how to
convert a recursive algorithm to an iterative one. The study of program ver-
ification techniques is important to the computer science major. The instructor
may decide, however, to postpone its study in Section 2.3 to later in the course.
The last section of the chapter introduces the topic of abstract data type, the
fundamental approach to data structures employed in the text.

Chapter 3

In this chapter the text continues the study of abstract data types by examining
various composite types that are built into Pascal—array, record, file, and set.
After defining each as an ADT, the text presents its built-in Standard Pascal
implementation along with applications. The discussion of arrays is augmented
by a study of the sequential and binary search methods in Section 3.2. Depend-
ing on the level of the class, the instructor can treat this chapter as reference
material or cover the topics in detail.

Chapter 4

Chapter 4 covers the ADT string along with various array implementations
and applications in text editing. After the discussion in Chapter 7, a linked list
implementation is considered and compared to the array one (Section 8.2). The
instructor again has the option of treating the material of this chapter in a cur-
sory or detailed fashion.



Preface < Xiii

Chapter 5

Section 5.1 gives a conceptual view of a stack, defines stack as an abstract data
type, and presents various short applications. The next section discusses an im-
plementation of the ADT stack with arrays, postponing one with linked lists
until Chapter 8. Additional applications in Section §.3 include postfix notation
and simulation of recursion using a stack and iteration.

Chapter 6

The format of this chapter parallels that of Chapter 5. The first section covers
the abstract data type queue with several short applications, and Section 6.2
presents an array implementation. The last section develops a simulation of a
waiting line at a post office with top-down design and pseudocode development
of the procedures.

Chapter 7

After studying pointers in Section 7.1, the text devotes the rest of this chapter
to the abstract data type linked list. Manipulations of linked lists pictorially
(Section 7.2) precede the formal ADT definition (Section 7.3). Section 7.4
covers implementations with dynamic and static memory allocations. Circular,
doubly, and multiply linked lists are discussed in the optional, last section
along with an application to sparse matrices.

Chapter 8

In Section 8.1 the text discusses various applications of linked lists: memory
management with the development of user-defined New and Dispose opera-
tions; arithmetic on very large, nonnegative integers; and a generalized list struc-
ture similar to that employed by the language LISP. In Sections 8.2 through 8.4
the text reconsiders the abstract data types of string, stack, and queue, previ-
ously implemented statically with arrays, now implemented dynamically with
linked lists. For each ADT the advantages and disadvantages of these two im-
plementation techniques are discussed. Faced with a choice in the coding of the
abstract data types, in Section 8.5 the text reexamines how the programmer
should develop Pascal programs with ADT objects and operations hidden, to
be used like they are predefined. The student sees that by using ADT objects
and operations in the development of applications, he or she can substitute dif-
ferent implementations of the ADT without changing significantly the code of
the application program.

Chapter 9

This chapter examines the ADT table along with five implementations and ap-
plications, such as to relational data bases. Section 9.2 compares and contrasts
four implementations of the ADT table involving a static memory allocation
with ordered and unordered arrays and a dynamic memory allocation with



Xiv > Preface

ordered and unordered linked lists. The hash table implementation is presented
in the last section.

Chapter 10

The first section of this chapter introduces tree terminology and traversals,
while the next defines the abstract data type binary tree. Two binary tree imple-
mentations involving pointers are presented in Sections 10.3 and 10.4. With
the first of these implementations, many of the algorithms are developed recur-
sively. The instructor may choose to omit the second method, using threaded
trees, which illustrates a nonrecursive alternative. Section 10.5 explores binary
search trees, while optional Section 10.6 introduces AVL trees. The last of this
chapter examines several applications of binary trees: expression trees, deci-
sion trees, game trees, and Huffman codes.

Chapter 11

In this chapter the text presents several algorithms for sorting: insertion sort,
selection sort, quicksort, heapsort, mergesort, and sorting with a permutation
array. This examination of sorting considers the complexities of the various
methods and the situations for which they are best suited. The instructor may,
however, choose to omit one or more of these techniques, such as the selection
sort of Section 11.2. Because this chapter is substantially self-contained, the
instructor also has the option of covering the material earlier in the course.

Chapter 12

The abstract data type graph, discussed in Section 12.1, is implemented with
adjacency matrices (Section 12.2) and with adjacency lists (Section 12.3).
Section 12.4 presents algorithms with accompanying diagrams for depth-first
and breadth-first traversals of graphs. In the last section the text covers applica-
tions involving mazes, minimal spanning trees, and shortest paths in networks.

Learning Features
Chapter introductions One to several paragraphs at the beginning of each
chapter give an overview of the material in the chapter.

Example operations/applications Examples help to clarify the material. The
organized approach to examples, particularly with accompanying diagrams,
aids understanding of the material. Applications illustrate the use of a data
structure, demonstrate its importance, and provide interest.

Numerous diagrams with boldface type to emphasize changes Diagrams help
students visualize the actions of operations and algorithms.



Preface <« XV

Implementations of an ADT presented after the formal definition Only after
students become familiar with a data structure on the higher level of an ADT
does the text consider implementation details.

Historical anecdotes Such anecdotes add interest to the text. Moreover, they
often present material that a computer science major should know about the
history of the discipline.

Numerous exercises at the end of each section Exercises are at the end of each
section, not just at the end of the chapter. On the average there are 21 exercises
per section, 95 per chapter. Exercises include short answer problems, diagrams
of the execution of segments, design of procedures and functions using pseudo-
code and ADT operations, coding of procedures and functions, applications,
and questions from the Advanced Placement Examination in Computer Science.

Answers to all exercises Answers in Appendix D to some exercises (those
with italicized numbers) for each section allow students to check their work for
immediate reinforcement. The Instructor’s Manual contains answers to all the
remaining exercises.

Programming projects On the average, there are 6 programming projects per
chapter. These are major assignments to be implemented on the computer. By
completing such a project, the student implements an application of the data
structure and enhances his or her understanding of the material and abilities in
software design.

Organized comparison of different implementations of ADTs These com-
parisons provide guidelines for the implementations which are best to employ
in various situations.

Supplementary Materials

Disk of ADT implementations

A disk with implementations in Pascal of the abstract data types is available to
adopters from West upon request. Each ADT implementation appears in two
source files on the disk:

1. A text file in the format of a Turbo Pascal unit is ready for compilation
in that version of the language. Minor modifications convert this file to
one that can be used by other versions of Pascal which permit separate
compilation.

2. Another text file contains the implementation as it would appear after a
program statement. For appropriate versions of Pascal, this file can be
used as an “include” file. If separately compiled units or include files are
not available, this text file can be copied for use in a program.



XVi > Preface

A file, called “Read Me,” and documentation in the Instructor’s Manual de-
scribe how to employ these. Since the files are stored as text files, they can be
easily edited with an editor or a word processor. The disk is available as a 32"
Macintosh, 3%2" IBM, or 5%4" IBM disk. A free site license is issued to any
school which adopts the text.

Instructor’s Manual

An Instructor’s Manual, written by the author and John S. Hinkel, contains all
solutions to text exercises that are not provided in the text appendix, answers
to at least one project per chapter, and additional test problems with answers.
The Pascal code was tested on a Macintosh computer using Turbo Pascal.

Acknowledgements

Many people provided valuable assistance in the completion of this book.
John S. Hinkel has been extremely helpful in many ways. As coauthor of the
Instructor’s Manual, among other tasks, he wrote and implemented the pro-
gramming exercises, projects, and units in Pascal. As problem checker, he care-
fully verified all examples and answers included in the text, testing operations
on the computer where appropriate. As one of the reviewers of the first and
second drafts of the manuscript, he provided insightful suggestions for im-
provements to the book. As a colleague, he gave me another viewpoint con-
cerning issues relative to the text. I truly appreciate his help and friendship.

The administration at Wofford College, especially my chairman, Richard
Robinson, has been generous in providing me encouragement and a reduced
load to write the book.

Friends at Lawrence Livermore National Laboratory (LLNL), where I have
worked for six summers, have given me many opportunities and taught me
much which have enhanced this text. Special thanks go to Ted Einwohner, Bob
Cralle, George Michael, and John Ranelletti.

Peter Marshall, Executive Editor at West Publishing Company, is a mar-
velous editor. He provided many good ideas, a clear direction, and valuable
assistance. Tamborah Moore, Production Editor, kept the production moving
smoothly and on time. My thanks also go to Sheryl Rose for her accurate copy
editing; to Paula Schlosser for her nice design; and to Maralene Bates for her
assistance in the review stage.

I am grateful to the following reviewers who offered many valuable con-
structive criticisms:

John Hinkel Andrew Bernat

Lander College, South Carolina University of Texas, El Paso
Nancy Wiegand Dean Arden

University of Wisconsin, Madison State University of New York,

Albany



Preface < Xvii

John Bertani
Oregon State University Anne Louise Radimsky
California State University,

Debra Trantina
Sacramento

Arizona State University
George Strawn

Luegina Mounfield Iowa State University

Louisiana State University,
Baton Rouge Paul Schnare

. . Eastern Kentucky Universit
Krithi Ramamritham Y Y

University of Massachusetts, Ralph H. Bjork
Amberst University of Wisconsin, Platteville

Ben Moreland
University of Connecticut, Storrs

My husband, George W. Shiflet, Jr., has been helpful in so many ways, in-
cluding proofreading galleys and page proofs.

George and my parents, Isabell and Carroll Buzzett, have given me many
years of love and encouragement along with their prayers. Without them
this book would not be possible; and so, it is dedicated to those whom I love
the most.



CONTENTS

Programming Methodology

2
.3 Testing and Debugging 12
.4 Analysis of Algorithms 17

2.2 Recursion vs. lteration 45
2.3 Induction and Program Verification 56
2.4 Abstract Data Types 59

PREFACE i
CHAPTER 1
1.1 Program Design 1
1.2 Coding 6
1
1
CHAPTER 2 Fundamentals
2.1 Recursion 25§
CHAPTER 3

Elementary Da[a Struﬁctures

3.1 ADT Array and Implementation 69
3.2 Sequential and Binary Searches 84
3.3 ADT Record and Implementation 95
3.4 ADT File and Implementation 103
3.5 ADT Set and Implementation 115

25

69

vii



viii » Contents

CHAPTER 4

Strings 126

CHAPTER 9

4.1 ADT String 126
4.2 Array Implementation of Strings 132
4.3 String Applications 145

Stacks 159

CHAPTER 0

5.1 ADT Stack 159
5.2 Array Implementation of Stacks 169
5.3 Applications of Stacks 175

Queues 190

CHAPTER 1

6.1 ADT Queue 190
6.2 Array Implementation of Queues 198
6.3 Queue Applications 207

Lists 215

CHAPTER O

CHAPTER 9

7.1 ADT Pointer and Implementation 215
7.2 Linked List 230

7.3 ADT Linked List 244

7.4 Linked List Implementations 256
7.5 Variations of Linked Lists 273

Using Linked Lists 288

8.1 Applications of Linked Lists 288

8.2 Linked List Implementation of Strings 306
8.3 Linked List Implementation of Stacks 312
8.4 Linked List Implementation of Queues 319
8.5 Encapsulation and Pascal 324

Tables 327

9.1 ADT Table 327
9.2 Table Implementations 334
9.3 Hash Table 342



Contents < iX

cuapTer 10 Binary Trees - - 362

10.1 Tree Terminology 362

10.2 ADT Binary Tree 371

10.3 Binary Tree Implementation 383

10.4 Threaded Tree 397

10.5 Binary Search Tree 404

10.6 AVL Tree 416

10.7 More Applications of Binary Trees 426

cHaPpTER 11 Sorting 436

11.1 Insertion Sort 436

11.2 Selection Sort 444

11.3 Quicksort 449

11.4 Heapsort 460

11.5 Mergesort 477

11.6 Sorting with a Permutation Array 486
11.7 Comparison of Sorting Techniques 489

cHAPTER 12 Graphs and Networks 495

12.1 ADT Graph 495

12.2 Adjacency Matrix Implementation of Graph 502
12.3 Adjacency List Implementation of Graph 511
12.4 Graph Traversal 525

12.5 Graph Applications 539

APPENDICES

A. Random Number Generator 555

B. Turbo Pascal and UCSD Pascal: Extensions and Variations 557
C. Abridged ASCII and EBCDIC Tables S61

D. Answers to Selected Exercises 565



CHAPTER

Programming Methodology

Introductlon

Structures that hold data, operations that manipulate these structures, and al-
gorithms that use these operations are the essence of data structures. Since we
will be developing application programs employing data structures, we begin
by studying an organized approach to the creation of programs and a measure
of the efficiency of the methods we use.

In the first three sections of this chapter we examine the process of develop-
ing software with particular emphasis on the design, coding, and testing phases.
Careful attention to these areas is essential to the production of good programs
and software systems. Usually, we have a choice of techniques to use in the de-
sign of different parts, or modules, in a program. In the last section of this
chapter we study a measure of the efficiency of algorithms. This measure gives
us a basis of comparison so that we can select the most appropriate technique
to use in a particular situation.

Program Design

Data structures is a study of the various frameworks for storing data and the
algorithms that implement and perform operations on these structures. Un-
doubtedly, you have already written a number of algorithms. An algorithm is a
method for accomplishing something in a finite number of steps. The term is
derived from the last name of a Persian mathematician, Abu Ja’far Mohammed
ibn Misa al-Khowarizmi, who wrote an important arithmetic textbook about
825 A.D. In the prerequisite programming course you covered algorithmic de-
velopment as well as details of the Pascal language.

Before launching into a study of data structures, we will review the process
of problem solving involved in software development. This process, called the
software life cycle, has five major steps:



2 » CHAPTER 1

PROGRAMMING METHODOLOGY

1. Analysis
2. Design
3. Coding
4. Testing

5. Maintenance

The first step of the software life cycle is to obtain a clear understanding of the
problem through a detailed analysis. Only after a careful and thorough design
process should we attempt to translate the solution into a programming lan-
guage. Such attention to the design phase often will minimize the time needed
for debugging. Problems revealed at a stage such as the coding or testing phase
may require that we return to an earlier step and repeat part of the life cycle,
making necessary changes. Many professional programmers spend a majority
of their time maintaining existing systems of programs by correcting and modi-
fying them.

In beginning computer science courses you are usually given the specifica-
tions for new problems so that your emphasis is on the design, coding, and
testing steps of the software life cycle. Thus, in this chapter we cover sugges-
tions for producing quality work in each of these three phases. The last section
of the chapter covers the basis for evaluating and comparing the algorithms we
develop.

In 1976 Edsger Dijkstra wrote of the importance of using structured pro-
gramming techniques. Structured programs use only three basic constructs:

1. Sequential structure, with steps performed one after another in suc-
cession.

2. Selection structure, such as implemented with an if-then-else or case
statement.

3. Repetition structure, such as implemented with a for, while, or repeat
loop.

Every program can and should be written using only these three constructs.
Structured programming has proved to be an effective technique in producing
programs that are easier to write, read, test, debug, and maintain.

Another aspect of structured programming is top-down design or the de-
velopment of a solution in a modular fashion starting at the highest level with
repeated refinement. It is impossible to keep all aspects of a complex program
in mind. We can, however, design the major steps of the solution as modules. In
turn, each of these steps can be further broken down into more manageable
portions or submodules. Within a program the modules are usually realized as
procedures or functions with the main program invoking subprograms at the
highest level of design. It is best for each subprogram to perform only one
major task and usually to have no more than about 30 statements. Each of
these modules can be tested and debugged independently. Consider how much
easier it would be to find an error in 30 lines of code of a module as opposed to



