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Preface

This book presents a broad overview of numerical methods for students and pro-
fessionals in computationally oriented disciplines who need to solve mathematical
problems. It differs from traditional numerical analysis texts in that it focuses
on the motivation and ideas behind the algorithms presented rather than on de-
tailed analyses of them. I try to convey a general understanding of the techniques
available for solving problems in each major category, including proper problem
formulation and interpretation of results, but I advocate the use of professionally
written mathematical software for obtaining solutions whenever possible. The book
is aimed much more at potential users of mathematical software than at potential
creators of such software. I hope to make the reader aware of the relevant issues in
selecting appropriate methods and software and using them wisely.

At the University of Illinois, this book is used as the text for a comprehensive,
one-semester course on numerical methods that serves three main purposes:

¢ As a terminal course for senior undergraduates, mainly computer science, math-
ematics, and engineering majors

e As a breadth course for graduate students in computer science who do not intend
to specialize in numerical analysis

e As a training course for graduate students in science and engineering who need to
use numerical methods and software in their research. It is a core course for the
interdisciplinary graduate program in Computational Science and Engineering
sponsored by the College of Engineering.

To accommodate this diverse student clientele, the prerequisites for the course and
the book have been kept to a minimum: basic familiarity with linear algebra, mul-
tivariate_calculus, and a smattering of differential equations. No prior familiarity
with numerical methods is assumed. The book adopts a fairly sophisticated per-
spective, however, so a reasonable level of maturity on the part of the student (or
reader) is advisable. Beyond the academic setting, I hope that the book will also be



Preface

useful as a reference for practicing engineers and scientists who may need a quick
overview of a given computational problem and the methods and software available
for solving it.

Although the book emphasizes the use of mathematical software, unlike some
other software-oriented texts it does not provide any software, nor does it concen-
trate on any specific software packages, libraries, or environments. Instead, for each
problem category pointers are provided to specific routines available from publicly
accessible repositories and the major commercial libraries and packages. In many
academic and industrial computing environments such software is already installed,
and in any case pointers are also provided to public domain software that is freely
accessible via the Internet. The computer exercises in the book are not dependent
on any specific choice of software or programming language.

The main elements in the organization of the book are as follows:

Chapters: Each chapter of the book covers a major computational problem
area. The first half of the book deals primarily with algebraic problems, whereas the
second half treats analytic problems involving derivatives and integrals. The first
two chapters are fundamental to the remainder of the book, but the subsequent
chapters can be taken in various orders according to the instructor’s preference.
More specifically, the major dependences among chapters are roughly as follows:

Chapter Depends on | Chapter Depends on | Chapter Depends on

2 1 6 1,235 10 1,2,5,7,9
3 1,2 7 1,2 11 1,2,7,9, 10
4 1,23 8 1,27 12 1,2,7

5 1,2 9 1,257 13 1

Thus, Chapters 7, 8, 12, and 13 could be covered much earlier, and Chapters 3, 4
and 6 much later, than their appearance in the book. For example, Chapters 3,
7, and 12 all involve some type of data fitting, so it might be desirable to cover
them as a unit. As another example, iterative methods for linear systems are
contained in Chapter 11 on partial differential equations because that is where the
most important motivating examples come from, but much of this material could
be covered immediately following direct methods for linear systems in Chapter 2.
Note that eigenvalues are used freely throughout the remainder of the book, so
there is some incentive for covering Chapter 4 fairly early unless the students are
already familiar with the basics of this topic.

There is more than enough material in the book for a full semester course, so
some judicious omissions will likely be required in a one-term course. For exam-
ple, Chapter 13 on random numbers and stochastic simulation is only peripherally
related to the remainder of the book and is an obvious candidate for omission (ran-
dom number generators are used in a number of exercises throughout the book,
however). The entire book can be covered in a two-quarter or two-semester course.

Examples: Almost every concept and method introduced is illustrated by one
or more examples. These examples are meant to supplement the relatively terse
general discussion and should be read as an essential part of the text. The examples
have been kept as simple as possible (sometimes at the risk of oversimplification) so
that the reader can easily follow them. In my experience, a simple example that is



thoroughly understood is usually more helpful than a more realistic example that
is more difficult to follow.

Software: The lists of available software for each problem category are meant
to be reasonably comprehensive. I have not attempted to single out the “best”
software available for a given problem, partly because usually no single package is
superior in all respects and partly to allow for the varied software availability and
choice of programming language that may apply for different readers. All of the
software cited is at least competently written, and some of it is superb.

Exercises: The book contains many exercises, which are divided into three
categories:

e Review questions, which are short-answer questions designed to test basic con-
ceptual understanding

o FEzercises, which require somewhat more thought, longer answers, and possibly
some hand computation

e Computer problems, which require some programming and often involve the use
of existing software.

The review questions are meant for self-testing on the part of the reader. They
include some deliberate repetition to drive home key points and to build confidence
in the mastery of the material. The longer ezercises are meant to be suitable
for written homework assignments. Some of these require manual computations
with simple examples, while others are designed to supply details of derivations
and proofs omitted from the main text. The latter should be especially useful if
the book is used for a more theoretical course. The computer problems provide an
opportunity for hands-on experience in using the recommended software for solving
typical problems in each category. Some of these problems are generic, but others
are directly related to specific applications in various scientific and engineering
disciplines.

Changes for the Second Edition. Each chapter now begins with a moti-
vational discussion and one or more illustrative examples, which are then followed
by discussions of existence, uniqueness, and conditioning of solutions for the given
type of problem. The idea is to enhance the student’s understanding of why the
problem is important and how to recognize a “good” or “bad” formulation of the
problem before considering algorithms for solving it. The major algorithms are
now stated formally and numbered for easy reference. The bibliography has been
brought up to date and the historical notes slightly expanded. The discussion in
Chapter 1 on forward and backward error and the relationship between them has
been expanded and clarified. Most of the material on the singular value decom-
position has been moved from Chapter 4 to Chapter 3, where its applications fit
more comfortably. The coverage of eigenvalue algorithms in Chapter 4 has been ex-
panded to include more motivation and details, especially on QR iteration, as well
as some additional methods. The treatment of constrained optimization in Chap-
ter 6 has been substantially expanded. The chapters on differential equations have
been slightly reorganized and the coverage of spectral methods expanded. Chapter
12 on the fast Fourier transform has been reorganized and streamlined by deleting
some extraneous material.
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Notation

The notation used in this book is fairly standard and should require little expla-
nation. We freely use vector and matrix notatien, generally using upper-case bold
type for matrices, lower-case bold type for vectors, regular type for scalars. Iter-
ation and component indices are denoted by subscripts, usually 4 through n. For
example, a vector  and matrix A have entries z; and a;j, respectively. On the
few occasions when both an iteration index and a component index are needed,
the iteration is indicated by a parenthesized superscnpt as in a:( ) to indicate the
ith component of the kth vector in a sequence. Otherwise, z; denotes the ith
component of a vector &, whereas ¢ denotes the kth vector in a sequence.

For simplicity, we will deal primarily with real vectors and matrices, although
most of the theory and algorithms we discuss carry over with little or no change
to the complex field. The set of real numbers is denoted by R, n-dimensional real
Euclidean space by R™, and the set of real m x n matrices by R™*". The analogous
complex entities are denoted by C, C", and C™*", respectively.

The transpose of a vector or matrix is indicated by a superscript T', and the
conjugate transpose by superscript H (for Hermitian transpose). Unless otherwise
indicated, all vectors are regarded as column vectors; a row vector is indicated by
explicitly transposing a column vector. For typesetting convenience, the compo-
nents of a column vector are sometimes indicated by transposing the corresponding
row vector, asin ¢ = [z; w2 ]7. The inner product (also known as dot product or
scalar product) of two n—vectors T and y is a special case of matrix multiplication
and thus is denoted by Ty (or ¥y in the complex case). Similarly, the outer
product of two n-vectors & and y, which is an n X n matrix, is denoted by zy”
The identity matrix of order n is denoted by I, (or just I if the dimension n is clea.r
from context), and its ith column is denoted by e;. A zero matrix is denoted by O,
a zero vector by o, and a zero scalar by 0. A diagonal matrix with diagonal entries
dy,...,dy is denoted by diag(di,...,d,). Inequalities between vectors or matrices
are taken to apply elementwise. The subspace of R™ spanned by the columns of
an m X n matrix A, i.e., {Az : € R"}, is denoted by span(A).

The ordinary derivative of a function f(t) of one variable is denoted by df /dt
or by f'(t). Partial derivatives of a function of several variables, such as u(z,y),
are denoted by du/8z, for example, or in some contexts by a subscript, as in u.
Notation for gradient vectors and Jacobian and Hessian matrices will be introduced
as needed. All logarithms are natural logarithms (base e ~ 2.718) unless another

xiii
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base is explicitly indicated. We use the symbol & to indicate approximate equal-
ity in the ordinary sense and reserve the symbol = specifically for least squares
approximations.

The computational cost, or complexzity, of numerical algorithms is usually mea-
sured by the number of arithmetic operations required. Traditionally, numerical an-
alysts have counted only multiplications (and possibly divisions and square roots),
because multiplications were usually significantly more expensive than additions or
subtractions and because in most algorithms multiplications tend to be paired with
a similar number of additions (for example, in computing the inner product of two
vectors). More recently, the difference in cost between additions and multiplica-
tions has largely disappeared (indeed, many modern microprocessors can perform
a coupled multiplication and addition with a single multiply-add instruction).
Computer vendors and users like to advertise the highest possible performance, so
it is increasingly common for every arithmetic operation to be counted. Because
certain operation counts are so well known using the traditional practice, however,
only multiplications are usually counted in this book. To clarify the meaning, the
phrase “and a similar number of additions” will be added, or else it will be explicitly
stated when both are being counted.

In quantifying operation counts and the accuracy of approximations, we will
often use “big-oh” notation to indicate the order of magnitude, or dominant term,
of a function. For an operation count, we are interested in the behavior as the size
of the problem, say n, becomes large. We say that

f(n) = 0(g(n))

(read “f is big-oh of g” or “f is of order g”) if there is a positive constant C such
that
|f(n)] £ Clg(n)]

for all n sufficiently large. For example,
2n% 4+ 3n% + n = O(n?)

because as n becomes large, the terms of order lower than n® become relatively
insignificant. For an accuracy estimate, we are interested in the behavior as some
quantity h, such as a step size or mesh spacing, becomes small. We say that

f(h) = O(g(h))
if there is a positive constant C such that

|£(R)] < Clg(h)]
for all h sufficiently small. For example,

= 1R R 4 = 1+ R+ O(R)

because as h becomes small, the omitted terms beyond h? become relatively in-
significant. Note that the two definitions are equivalent if h = 1/n.
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Chapter 1

Scientific Computing

1.1 Introduction

The subject of this book is traditionally called numerical analysis. Numerical
analysis is concerned with the design and analysis of algorithms for solving mathe-
matical problems that arise in many fields, especially science and engineering. For
this reason, numerical analysis has more recently also become known as scientific
computing. Scientific computing is distinguished from most other parts of computer
science in that it deals with quantities that are continuous, as opposed to discrete.
It is concerned with functions and equations whose underlying variables—time, dis-
tance, velocity, temperature, density, pressure, stress, and the like—are continuous
in nature.

Most of the problems of continuous mathematics (for example, almost any prob-
lem involving derivatives, integrals, or nonlinearities) cannot be solved exactly, even
in principle, in a finite number of steps and thus must be solved by a (theoretically
infinite) iterative process that ultimately converges to a solution. In practice one
does not iterate forever, of course, but only until the answer is approximately cor-
rect, “close enough” to the desired result for practical purposes. Thus, one of
the most 1mportar;t aspects of scientific computing is finding rapidly convergent
Waﬂd assessing the accuracy of the resulting approximation. If
convergence 1s sufficiently rapid, even some of the problems that can be solved by
finite algorithms, such as systems of linear algebraic equations, may in some cases
be better solved by iterative methods, as we will see.

Consequently, a second factor that distinguishes scientific computing is its con-
cern with the effects of approximations. Many solution techniques involve a whole
series of approximations of various types. Even the arithmetic used is only approx-
imate, for digital computers cannot represent all real numbers exactly. In addition
to having the usual properties of good algorithms, such as efficiency, numerical
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algorithms should also be as reliable and accurate as possible desplte the various
approximations made along the way.

1.1.1 Computational Problems

As the name suggests, many problems in scientific computing come from science
and engineering, in which the ultimate aim is to understand some natural phe-
nomenon or to design some device. Computational simulation is the representation
and emulation of a physical system or process using a computer. Computational
simulation can greatly enhance scientific understanding by allowing the investiga-
tion of situations that may be difficult or impossible to investigate by theoretical,
observational, or experimental means alone. In astrophysics, for example, the de-
tailed behavior of two colliding black holes is too complicated to determine the-
oretically and impossible to observe directly or duplicate in the laboratory. To
simulate it computationally, however, requires only an appropriate mathematical
representation (in this case Einstein’s equations of general relativity), an algorithm
for solving those equations numerically, and a sufficiently large computer on which
to implement the algorithm.

Computational simulation is useful not just for exploring exotic or otherwise
inaccessible situations, however, but also for exploring a wider variety of “normal”
scenarios than could otherwise be investigated with reasonable cost and time. In
engineering design, computational simulation allows a large number of design op-
tions to be tried much more quickly, inexpensively, and safely than with traditional
“build-and-test” methods using physical prototypes. In this context, computational
simulation has become known as wirtual prototyping. In improving automobile
safety, for example, crash testing is far less expensive and dangerous on a computer
than in real life, and thus the space of possible design parameters can be explored
much more thoroughly to develop an optimal design.

The overall problem solving process in computational simulation usually in-
cludes the following steps:

1. Develop a mathematical model—usually expressed by equations of some type—of

a physical phenomenon or system of interest

Develop algorithms to solve the equations numerically

Implement the algorithms in computer software

Run the software on a computer to simulate the physical process numerically

Represent the computed results in some comprehensible form such as graphical

visualization

6. Interpret and validate the computed results, repeating any or all of the preceding
steps, if necessary.

S o CRED)

Step 1 is often called mathematical modeling. It requires specific knowledge of
the particular scientific or engineering disciplines involved as well as knowledge
of applied mathematics. Steps 2 and 3—designing, implementing, analyzing, and
using numerical algorithms and software—are the main subject matter of scientific
computing, and of this book in particular. Although we will focus on Steps 2 and 3,
it is essential that all of these steps, from problem formulation to interpretation and



