

Inborn Errors of Metabolism

From Neonatal Screening to Metabolic Pathways

EDITED BY

Brendan Lee

OXFORD UNIVERSITY PRESS

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide.

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trademark of Oxford University Press in the UK and certain other countries.

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016

© Oxford University Press 2015

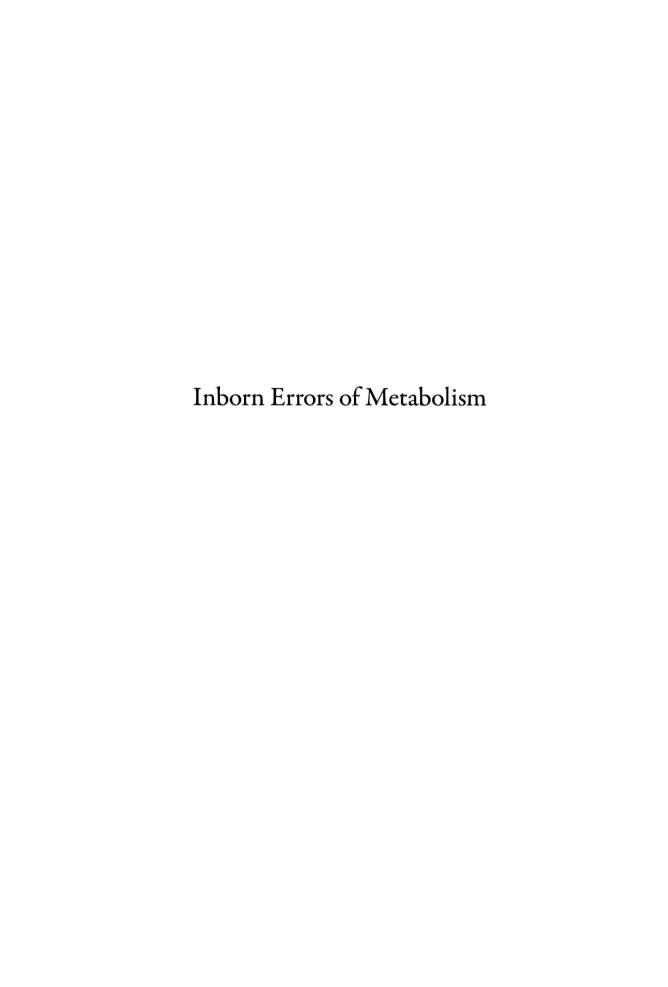
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by license, or under terms agreed with the appropriate reproduction rights organization. Inquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer.

Library of Congress Cataloging-in-Publication Data

Inborn errors of metabolism (Lee)
Inborn errors of metabolism: from neonatal screening to metabolic pathways / edited by Brendan Lee and Fernando Scaglia.

p.; cm.


Includes bibliographical references. ISBN 978-0-19-979758-5 (alk. paper)

I. Lee, Brendan, editor. II. Scaglia, Fernando, editor. III. Title. [DNLM: 1. Metabolism, Inborn Errors. WD 205]

> RC627.8 616.3'9042—dc23 2014010620

This material is not intended to be, and should not be considered, a substitute for medical or other professional advice. Treatment for the conditions described in this material is highly dependent on the individual circumstances. And, while this material is designed to offer accurate information with respect to the subject matter covered and to be current as of the time it was written, research and knowledge about medical and health issues is constantly evolving and dose schedules for medications are being revised continually, with new side effects recognized and accounted for regularly. Readers must therefore always check the product information and clinical procedures with the most up-to-date published product information and data sheets provided by the manufacturers and the most recent codes of conduct and safety regulation. The publisher and the authors make no representations or warranties to readers, express or implied, as to the accuracy or completeness of this material. Without limiting the foregoing, the publisher and the authors make no representations or warranties as to the accuracy or efficacy of the drug dosages mentioned in the material. The authors and the publisher do not accept, and expressly disclaim, any responsibility for any liability, loss or risk that may be claimed or incurred as a consequence of the use and/or application of any of the contents of this material.

1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper

OXFORD MONOGRAPHS ON MEDICAL GENETICS

General Editors

Judith G. Hall Peter S. Harper Louanne Hudgkins Evan Eichler

- R.B. McConnell: The genetics of gastrointestinal disorders
- 2. A.C. Kopéc: The distribution of the blood groups in the United Kingdom
- 3. E. Slater and V.A. Cowie: The genetics of mental disorders
- 4. C.O. Carter and T.J. Fairbank: The genetics of locomotor disorders
- A.E. Mourant, A.C. Kopéc, and K. Domaniewska-Sobezak: The distribution of the human blood groups and other polymorphisms
- A.E. Mourant, A.C. Kopéc, and K. Domaniewska-Sobezak: Blood groups and diseases
- A.G. Steinbert and C.E. Cook: The distribution of the human immunoglobulin allotypes
- D. Tills, A.C. Kopéc, and R.E. Tills The distribution of the human blood groups and other polymorphisms: Supplement I
- 10. D.Z. Loesch: Quantitative dermatoglyphics: classification, genetics, and pathology
- 11. D.J. Bond and A.C. Chandley: Aneuploidy
- 12. P.F. Benson and A.H. Fensom: Genetic biochemical
- G.R. Sutherland and F. Hecht: Fragile sites on human chromosomes
- M. d'A. Crawfurd: The genetics of renal tract disorders
- 16. C.R. Scriver and B. Child: Garrod's inborn factors in disease
- 18. M. Baraitser: The genetics of neurological disorders
- 19. R.J. Gorlin, M.M. Cohen, Jr., and L.S. Levin: Syndromes of the head and neck, third edition
- 21. D. Warburton, J. Byrne, and N. Canki: Chromosome anomalies and prenatal development: an atlas
- 22. J.J. Nora, K. Berg, and A.H. Nora: Cardiovascular disease: genetics, epidemiology, and prevention
- A.E.H. Emery: Duchenne muscular dystrophy, second edition
- 25. E.G.D. Tuddenham and D.N. Cooper: The molecular genetics of haemostasis and its inherited disorders
- 26. A. Boué: Foetal medicine
- 27. R.E. Stevenson, J.G. Hall, and R.M. Goodman: Human malformations
- R.J. Gorlin, H.V. Toriello, and M.M. Cohen, Jr.: Hereditary hearing loss and its syndromes
- R.J.M. Gardner and G. R. Sutherland: Chromosomes abnormalities and genetic counseling, second edition
- A.S. Teebi and T.I. Farag: Genetic disorders among Arab populations
- M.M. Cohen, Jr.: The child with multiple birth defects
- 32. W.W. Weber: Pharmacogenetics
- 33. V.P. Sybert: Genetic skin disorders
- M. Baraitser: Genetics of neurological disorders, third edition
- 35. H. Ostrer: Non-Mendelian genetics in humans

- 36. E. Traboulsi: Genetic factors in human disease
- G.L. Semenza: Transcription factors and human disease
- 38. L. Pinsky, R.P. Erickson, and R.N. Schimke: Genetic disorders of human sexual development
- R.E. Stevenson, C.E. Schwartz, and R.J. Schroer: X-linked mental retardation
- 40. M.J. Khoury, W. Burke, and E. Thomson: Genetics and public health in the 21st century
- 41. J. Weil: Psychosocial genetic counseling
- 42. R.J. Gorlin, M.M. Cohen, Jr., and R.C.M. Hennekam: Syndromes of the head and neck, fourth edition
- 43. M.M. Cohen, Jr., G. Neri, and R. Weksberg:

 Overgrowth syndromes
- R.A. King, J.I. Rotter, and A.G. Motulsky: The genetic basis of common diseases, second edition
- G.P. Bates, P.S. Harper, and L. Jones: Huntington's disease, third edition
- 46. R.J.M. Gardner and G.R. Sutherland: Chromosome abnormalities and genetic counseling, third edition
- 47. I.J. Holt: Genetics of mitochondrial disease
- 48. F. Flinter, E. Maher, and A. Saggar-Malik: The genetics of renal disease
- C.J. Epstein, R.P. Erickson, and A. Wynshaw-Boris: Inborn errors of development: the molecular basis of clinical disorders of morphogenesis
- 50. H.V. Toriello, W. Reardon, and R.J. Gorlin: Hereditary hearing loss and its syndromes, second edition
- 51. P.S. Harper: Landmarks in medical genetics
- R.E. Stevenson and J.G. Hall: Human malformations and related anomalies, second edition
- 53. D. Kumar and S.D. Weatherall: Genomics and clinical medicine
- C.J. Epstein, R.P. Erickson, and A. Wynshaw-Boris: Inborn errors of development: the molecular basis of clinical disorders of morphogenesis, second edition
- 55. W. Weber: Pharmacogenetics, second edition
- 56. P.L. Beales, I.S. Farooqi, and S. O'Rahilly: The genetics of obesity syndromes
- 57. P.S. Harper: A short history of medical genetics
- R.C.M. Hennekam, I.D. Krantz, and J.E. Allanson: Gorlin's syndromes of the head and neck, fifth edition
- D. Kumar and P. Elliot: Principles and practices of cardiovascular genetics
- 60. V.P. Sybert: Genetic skin disorders, second edition
- 61. R.J.M. Gardner, G.R. Sutherland, and L.C. Shaffer: Chromosome abnormalities and genetic counseling, fourth edition
- 62. D. Kumar: Genomics and health in the developing
- G. Bates, S. Tabrizi, and L. Jones: Huntington's disease, fourth edition
- 64. B. Lee and F. Scaglia: Inborn errors of metabolism: from neonatal screening to metabolic pathways

Contributors

Lutfi A. Abu-Elheiga, Ph.D.

Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston, Texas

Andrea Bordugo, M.D.

Division of Inherited Metabolic Disorders Department of Pediatrics University Hospital Padova, Italy

Nicola Brunetti-Pierri, M.D., F.A.C.M.G.

Telethon Institute of Genetics and Medicine; and Department of Translational Medical Sciences Federico II University of Naples Naples, Italy

Alberto Burlina, M.D.

Division of Inherited Metabolic Disorders Department of Pediatrics University Hospital Padova, Italy

Robert Burnett, B.S.

Medical Genetics Branch National Human Genome Research Institute Bethesda, Maryland

Philippe M. Campeau, M.D.

Department of Pediatrics University of Montreal Montreal, Quebec

Alexander J. Choi, B.S.

Medical Genetics Branch National Human Genome Research Institute Bethesda, Maryland

Erin M. Coffee, Ph.D.

Biology Department Boston University Boston, Massachusetts

William J. Craigen, M.D., Ph.D.

Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas

Erik A. Eklund, M.D., Ph.D.

Department of Clinical Sciences

Lund University

Lund, Sweden

Ayman W. El-Hattab, M.D.

Division of Medical Genetics

Department of Pediatrics

The Children's Hospital

King Fahad Medical City

Rivadh, Saudi Arabia

Faculty of Medicine

King Saud bin Abdulaziz University for

Health Sciences

Rivadh, Saudi Arabia

Christine M. Eng, M.D.

Professor of Molecular and Human Genetics

Director

DNA Diagnostic Laboratory

Baylor College of Medicine

Houston, TX

Ayelet Erez, M.D., Ph.D.

Incumbent of the Leah Omenn Career

Development Chair

Senior Scientist

Department of Biological Regulation

Weizmann Institute of Science

Rehovot, Israel

Yasemen Eroglu, M.D.

Pediatric Gastroenterology and Hepatology

Oregon Health & Science University

Portland, Oregon

Hudson H. Freeze, Ph.D.

Human Genetics Program

Sanford-Burnham Medical Research

Institute

La Jolla, California

Areeg El-Gharbawy, M.D.

Division of Medical Genetics, Department

of Pediatrics

Children's hospital of Pittsburgh of

UPMC-University of Pittsburgh School

of Medicine

Durham, North Carolina

Ehud Goldin, Ph.D.

Medical Genetics Branch

National Human Genome Research Institute

Bethesda, Maryland

Brett H. Graham, M.D., Ph.D.

Department of Molecular and Human

Genetics

Baylor College of Medicine

Houston, Texas

Georg F. Hoffmann, M.D.

Department of General Pediatrics

University Children's Hospital

Heidelberg, Germany

Dwight Koeberl, M.D., Ph.D.

Division of Medical Genetics, Department

of Pediatrics

Duke University Medical Center

Durham, North Carolina

Donna M. Krasnewich, M.D., Ph.D.

National Institute of General Medical

Sciences

National Institutes of Health

Bethesda, Maryland

Brendan Lee, M.D., Ph.D.

Robert and Janice Endowed Chair in

Molecular and Human Genetics

Department of Molecular and Human

Genetics

Baylor College of Medicine

Houston, Texas

Uta Lichter-Konecki, M.D., Ph.D.

Columbia University
Department of Pediatrics
Division of Clinical Genetics
New York, New York

Irini Manoli, M.D., Ph.D.

Organic Acid Research Section National Human Genome Research Institute National Institutes of Health Bethesda, Maryland

Jochen Meyburg, M.D.

Department of General Pediatrics University Children's Hospital Heidelberg, Germany

Sandesh C.S. Nagamani, M.D.

Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas

Gregory M. Pastores, M.D.

Consultant

New Haven, CT

Department of Medicine/National Centre for Inherited Metabolic Disorders Mater Misericordiae University Hospital Dublin, Ireland and Visiting Professor Department of Medicine

Marc C. Patterson, M.D., F.R.A.C.P.

Yale University School of Medicine

Pediatrics and Medical Genetics
Mayo Clinic College of Medicine
Chair, Division of Child and Adolescent
Neurology
Mayo Clinic
Rochester, Minnesota

Jean-Baptiste Roullet, Ph.D.

Department of Pediatrics Oregon Health & Science University Portland, Oregon

Fernando Scaglia, M.D.

Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas Texas Children's Hospital Houston, Texas

Oleg A. Shchelochkov, M.D., F.A.A.P.

Division of Genetics Department of Pediatrics University of Iowa Hospitals and Clinics Iowa City, Iowa

Marwan S. Shinawi, M.D.

Division of Genetics and Genomic Medicine Department of Pediatrics Washington University School of Medicine St. Louis, Missouri

Ellen Sidransky, M.D.

Medical Genetics Branch National Human Genome Research Institute Bethesda, Maryland

Robert D. Steiner, M.D.

Marshfield Clinic Research Foundation Department of Pediatrics University of Wisconsin Madison and Marshfield, Wisconsin

V. Reid Sutton, M.D.

Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas

Dean R. Tolan, Ph.D.

Biology Department Boston University

Boston, Massachusetts

Luis A. Umaña, M.D.

Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas

Charles P. Venditti, M.D., Ph.D.

Organic Acid Research Section National Human Genome Research Institute National Institutes of Health Bethesda, Maryland

Wei Zheng, M.D., Ph.D.

Therapeutics for Rare and Neglected Disease Program National Center for Advancing Translational Sciences National Institutes of Health Bethesda, Maryland

About the Editors

Brendan Lee, MD, PhD, is Professor and Chair in the Department of Molecular and Human Genetics at Baylor College of Medicine. As a pediatrician and geneticist, Dr. Lee studies structural birth defects and inborn errors of metabolism. In the area of metabolic disease, he is developing new treatments for maple syrup urine disease and urea cycle disorders.

Fernando Scaglia, MD, is a Professor in the Department of Molecular and Human Genetics at Baylor College of Medicine. His primary research interests include the natural history and molecular characterization of mitochondrial cytopathies, clinical trials for Leigh syndrome, and the study of nitric oxide and glucose metabolism in patients with MELAS syndrome.

Introduction

Typically, textbooks on inborn errors of metabolism have focused on presenting the classical biochemical defects, correlating them with different clinical presentations and describing the current therapeutic approaches. However, with the advent of comprehensive newborn screening and improvement in diagnostic methodologies, we are beginning to appreciate the complex natural histories of these disorders. They together underscore that the increasingly diverse disease phenotypes that arise from Mendelian disorders reflect not only the primary effect of the metabolic disturbance, that is, accumulation of toxic metabolites upstream of a biochemical block and deficiency of the product downstream. We and others now appreciate secondary effects of the block as well as new "moonlighting" functions of components of the pathway. Hence, the aim of this textbook focuses on a pathways approach to presenting the phenotypes of inborn errors of metabolism. This textbook covers a myriad of topics from the principles of newborn screening, to presenting the basic underlying biochemical and molecular alterations, to explaining how these basic alterations in pathways may in fact lead to complex secondary and tertiary effects in metabolism that contribute to the complex natural histories of these disorders. The boundaries between Mendelian and complex disorders have become increasingly blurred as we recognize that Mendelian inborn errors of metabolism are indeed complex disorders. An evolving paradigm shift now supported by robust evidence points to complex signaling pathways and networks in inborn errors of metabolism. Thus a new focus on understanding these diseases should be based on studying how their natural histories can inform us about the secondary and tertiary consequences of the primary metabolic defects. The focus on the broad pathway effects of specific metabolic derangements will lead us to a deeper understanding of the mechanisms of pathogenesis. Hence, we hope to extend beyond basic descriptions of the classical biochemistry to prepare future generations of students, clinicians, and scientists in the study of these disorders. We hope that this approach will stimulate new ideas for therapeutic strategies and management.

Contents

Con	tributors	V11
Abo	ut the Editors	xi
Intr	oduction	xiii
SEC	TION 1 Newborn Screening	
1.	Newborn Screening for Inborn Errors of Metabolism: Introduction	
	and Approaches for Confirmation	3
	V. Reid Sutton and Brett H. Graham	
SEC	TION 2 Pathways	
2.	Human Glycosylation Disorders: Many Faces, Many Pathways	37
	Hudson H. Freeze, Erik A. Eklund, and Donna M. Krasnewich	
3.	Gluconeogenesis	68
	Erin M. Coffee and Dean R. Tolan	
4.	Branched Chain Amino Acid Disorders	92
	Irini Manoli and Charles P. Venditti	
5.	Glycolysis	119
	Areeg El-Gharbawy and Dwight Koeberl	
6.	Urea Cycle: Ureagenesis and Non-Ureagenic Functions	134
	Oleg A. Shchelochkov, Sandesh C.S. Nagamani, Philippe M. Campeau,	
	Ayelet Erez, and Brendan Lee	
7.	Fatty Acid Metabolism and Defects	152
	Marwan S. Shinawi and Lutfi A. Abu-Elheiga	
8.	Mitochondrial Disorders	180
	Ayman W. El-Hattab and Fernando Scaglia	
9.	Cholesterol, Sterols, and Isoprenoids	203
	Yasemen Eroglu, Jean-Baptiste Roullet, and Robert D. Steiner	

vi Contents

10.	Disorders of One-Carbon Metabolism	225
	Luis Umaña and William J. Craigen	
11.	Neurotransmission and Neurotoxicity (Phenylketonuria and Dopamine)	241
	Uta Lichter-Konecki	
SEC	TION 3 Therapeutic Approaches	
12.	Cell and Organ Transplantation for Inborn Errors of Metabolism	271
	Alberto Burlina, Andrea Bordugo, Georg F. Hoffmann, and Jochen Meyburg	
13.	Gene Replacement Therapy for Inborn Errors of Metabolism	280
	Nicola Brunetti-Pierri	
14.	Enzyme Replacement and Other Therapies for the Lysosomal	
	Storage Disorders	303
	Gregory M. Pastores and Christine M. Eng	
15.	Chaperone Therapy for the Lysosomal Storage Disorders	328
	Alexander J. Choi, Robert Burnett, Ehud Goldin, Wei Zheng,	
	and Ellen Sidransky	
16.	Substrate Deprivation Therapy	346
	Marc C. Patterson	
Inde	x	357

SECTION 1

Newborn Screening