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Preface

More than two decades of intensive studies on nonlinear dynamics have
posed the question on the practical applications of chaos. One of the possible
answers is to control chaotic behavior in such a way as to make it predictable.
Indeed, nowadays the idea of controlling chaos, which we try to explain in
this book, is an appealing one.

This book is organized as follows. In Part I (Chapters 1-5) we describe
basic methods of controlling chaos, while in Part II we reprint fundamental
contributions to this field.

In Chapter 1 we give basic information about controlling procedures. Ideas
of feedback and nonfeedback methods as well as of chaos synchronization
are explained. Additionally, we describe Chua’s circuit (a very simple
electronic device) which will be used in several examples in the following
chapters.

Chapter 2 describes feedback controlling methods in which unstable
periodic orbits embedded in the chaotic attractor are stabilized. We discuss
the Ott—Grebogi—Yorke and Pyragas methods and their connections with
classical controlling methods. The method of controlling chaos by chaos, in
which chaotic behavior can be modified by coupling via a feedback loop with
another chaotic system, is also mentioned.

Nonfeedback methods are explained in Chapter 3. This approach is
inevitably much less flexible than feedback methods, but in many practical
systems it is easier to apply. We give methods in which chaos can be
controlled through operating conditions or by system design. Additionally,
taming chaos, entrainment and migration control procedures are discussed.

The synchronization chaos procedures of Chapter 4 allow two chaotic
systems to have exactly the same response. The procedures of Pecora and
Carroll and of continuous control are described. We also explain the idea of
secure communication.

In Chapter 5 we discuss the problem of the selection and engineering
implementation of the chaos controlling method for a particular practical
problem. '

Finally, in the references are listed the most important works on chaos
controlling and synchronization.

Of the methods given in Chapters 2-5, it is mainly those which the author
took a small part in developing that are described in detail. Other methods are
only briefly described; full details of these can be found in the papers
reprinted in Part II. The author has tried to select papers which, in his
opinion, have had very significant impact on the development of the field.
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Preface

This book is generally for those who have some introductory knowledge of
nonlinear dynamics and who are interested in its potential applications.
Knowledge of the classical control theory is not necessary to understand
chaos controlling methods but could be of benefit to readers.

Finally, I would like to acknowledge the valuable comments of J. Brindley,
C. Grebogi, L.O. Chua, M.S. El Naschie, L. Kocarev, V.S. Anishchenko, M.
Ogorzalek and J. Wojewoda who have helped me in preparation of this work.

Tomasz Kapitaniak
Rosanéw, 1996
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1 Introduction

Chaos occurs widely in engineering and natural systems; historically it has
usually been regarded as a nuisance and is designed out if possible. It has
been noted only as irregular or unpredictable behavior, often attributed to
random external influences. More recently, there have been examples of
the potential usefulness of chaotic behavior, and we describe some of its
potential usefulness in this book.

In Chapters 2 and 3 we review a number of methods by which undesirable
chaotic behavior may be controlled or eliminated. More speculatively, we
indicate ways in which the existence of chaotic behavior may be directly
beneficial or exploitable.

We can divide chaos controlling approaches into two broad categories:
firstly those in which the actual trajectory in the phase space of the system is
monitored and some feedback process is employed to maintain the trajectory
in the desired mode, and secondly nonfeedback methods in which some other
property or knowledge of the system is used to modify or exploit chaotic
behavior. Feedback methods do not change the controlled systems and
stabilize unstable periodic orbits on strange chaotic attractors, while
nonfeedback methods slightly change the controlled system, mainly by a
small permanent shift of control parameter, changing the system behavior
from chaotic attractor to periodic orbit which is close to the initial attractor.
The main idea of both methods is illustrated in Figure 1.1.

We describe several methods by which chaotic behavior in a dynamical
system may be modified, displaced in parameter space or removed. The
Ott—Grebogi—Yorke (OGY) method (Ott et al., 1990 — Paper 1) is extremely
general, relying only on the universal property of chaotic attractors, namely
that they have embedded within them infinitely many unstable periodic orbits
(or even static equilibria). On the other hand, the method requires following
the trajectory and employing a feedback control system which must be highly
flexible and responsive; such a system in some experimental configurations
may be large and expensive. It has the additional disadvantage that small
amounts of noise may cause occasional large departures from the desired
operating trajectory.

The nonfeedback approach is inevitably much less flexible, and requires
more prior knowledge of equations of motion. On the other hand, to apply
such a method, we do not have to follow the trajectory. The control procedures
can be applied at any time and we can switch from one periodic orbit to
another without returning to the chaotic behavior, although after each switch,
transient chaos may be observed. The lifetime of this transient chaos strongly
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Figure 1.1 General idea of feedback and nonfeedback controlling methods.

depends on initial conditions. Moreover, in a nonfeedback method we do not
have to wait until the trajectory is close to an appropriate unstable orbit; in
some cases this time can be quite long. The dynamic approach can be very
useful in mechanical systems, where feedback controllers are often very large
(sometimes larger than the control system). In contrast, a dynamical absorber
having a mass of order 1% of that of the control system is able, as we will
show in the example of Chapter 3, to convert chaotic behavior to periodic over
a substantial region of parameter space. Indeed, the simplicity by which
chaotic behavior may be changed in this way, and the possibility of an easy
access to different periodic orbits, may actually motivate the search for, and
exploitation of, chaotic behavior in practical systems. This prompts us to pose
a final question — how can we exploit chaos in real systems? The OGY
method, at least in theory, gives access to the wide range of possible behavior
encompassed by the unstable periodic (and other) orbits embedded in a
chaotic attractor. Moreover, the sensitivity of the chaotic regime to both initial
conditions and parameter values means that the desired effects may be
produced by fine tuning. Thus, we may actually wish to design chaos into a
system, in order to exploit this adaptability. Nonfeedback methods can, in
principle, give us advice on the design, whether we wish to design chaos out
or in. Additionally, they enable us to choose regions of design parameter space
or operating parameter space within which chaos will occur and will be
acceptable. An example of practical use might be the minimalization of metal
fatigue by switching from a necessary strictly periodic operation of the fully
loaded conditions, where repeated stresses are applied at certain places, to a
noisy periodicity (rather like a healthy heartbeat) under idling conditions.
The essential property of a chaotic trajectory is that it is not asymptotically
stable. Closely correlated initial conditions have trajectories which quickly
become uncorrelated. Despite this obvious disadvantage, it has been
established that control leading to the synchronization of two chaotic systems
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is possible. In Chapter 4 we describe basic synchronization procedures and
discuss its potential application to secure communications.

Methods described in Chapters 2—4 are illustrated by the example of the
controlling chaos in Chua’s circuit (Chua et al., 1986; Chua, 1993) shown in
Figure 1.2. Chua’s circuit contains three linear energy-storage elements (an
inductor and two capacitors), a linear resistor, and a single nonlinear resistor
N;, namely Chua’s diode with a three-segment piecewise-linear v—i
characteristic defined by

fve) = mee, + % (m, — my)|ve, + 1| =|ve, - 1)) (1.1)

where the slopes in the inner and outer regions are m, and m, respectively

(Figure 1.3).
In this case the state equations for dynamics of our scheme of Figure 1.2

are as follows:

dv
C, dtq = Gve, — ve,) = flve)
d .
C, (‘1};2 = G(Vc, - VCZ) + 1 (1.2)
L=
R
—~/\V\A .
+ +] R o+
v, v
t ﬁ-q Cl.: &
) rCz (&
4 B _ _ Ng

Figure 1.2 Chua’s circuit.

m

n1]

v C

Figure 1.3 ix—V¢, characteristic of non-linear resistor.
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where G = 1/R.
Introducing new variables, x = v, ¥ = V¢, 2 = i,/G, oo = C/C, and B=
C,/LG?, we can rewrite Equation (1.2) in dimensionless form:
x=ofy —x—fx]
y=x-y+z (1.3)
z=-Py
It is well-known that for R =1.64 kQ, C, =10 nF, C,=99.34 nF, m, =—0.76

mS, m, = 0.41 mS and L = 18.46 mH, Chua’s circuits operate on the chaotic
double-scroll Chua’s attractor shown in Figure 1.4.

Figure 1.4 Double scroll attractor.

The chaotic dynamics of Chua’s circuit have been widely investigated (e.g.
Madan, 1993). One of the main advantages of this system is the very good
accuracy between numerical simulations of Equation (1.3) and experiments
on real electronic devices. Experiments with this circuit are very easy to
perform, even for nonspecialists.

The problem of controlling chaos in engineering systems is discussed in
Chapter 5. Some basic modifications of controlling procedures which allow
their direct practical implementation are described.

In Part II we have reprinted a selection of important contributions to the
problem of controlling and synchronization of chaotic systems.



2 Controlling chaos through feedback

2.1

Ott—Grebogi-Yorke method

Ott, Grebogi and Yorke (Ott et al., 1990 — Paper I; Romeiras et al., 1992 —
Paper 2) have, in an important series of papers, proposed and developed a
method by which chaos can always be suppressed by shadowing one of the
infinitely many unstable periodic orbits (or perhaps steady states) embedded
in the chaotic attractor.

Basic assumptions of this method are as follows.

(a) The dynamics of the system can be described by an n-dimensional map
of the form.

G =SCusP) (2.1

This map, in the case of continuous-time systems, can be constructed,
e.g. by introducing a transversal surface of section for system trajectories
(Poincaré map).

(b) p is some accessible system parameter which can be changed in some
small neighborhood of its nominal value p*.

(c) For this value p* there is a periodic orbit within the attractor around
which we would like to stabilize the system.

(d) The position of this orbit changes smoothly with changes in p, and
there are small changes in the local system behavior for small variations
of p.

Let C, be a chosen fixed point of the map f of the system existing for the
parameter value p*. In the close vicinity of this fixed point with good
accuracy we can assume that the dynamics are linear and can be expressed
approximately by

G —Cr=M(C, - C,) 2.2)

The elements of the matrix M can be calculated using the measured
chaotic time series and analyzing its behavior in the neighborhood of the
fixed point. Further, the eigenvalues A,, A, and eigenvectors e,, e, of this
matrix can be found. These eigenvectors determine the stable and unstable
directions in the small neighborhood of the fixed point.

Denoting by £, /, the contravariant eigenvectors ( fie, = f.e,= 1, fie.= f.e,
= 0) we can find the linear approximation valid for small |p, — p*|:

Coi=p.8 +(Me.f +Aef)C. —p.g) (2.3)
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where
o lp)
0,
P ptp*
Because ,,, should fall on the stable manifold of {,, choose p, such that
f;lCnH = 0:
MG,
P, = ondu (2.4)
(A —1)gf.

The OGY algorithm is schematically explained in Figure 2.1, and its main
properties are as follows.

(a) No model of dynamics is required. One can use either full information
from the process or a delay coordinate embedding technique using single
variable experimental time series. An extremely interesting development
in this direction has been described by Dressler and Nitsche (1992 —
Paper 3).

(b) Any accessible variable (controllable) system parameter can be used as
the control parameter.

(c) In the absence of noise and error, the amplitude of applied control signal
must be large enough (exceed a threshold) to achieve control.

(d) Inevitable noise can destabilize the controlled orbit, resulting in
occasional chaotic bursts.

(e) Before settling into the desired periodic mode, the trajectory exhibits
chaotic transients, the length of which depends on the actual starting
point.

In Ogorzalek (1993b) the OGY method has been applied to control chaos
in Chua’s circuit (Figure 1.2, Equation (1.2)). Using a specific software
package (Dabrowski et al., 1992), unstable periodic orbits embedded in the

Figure 2.1 Idea of Ott—Grebogi—Yorke method.



