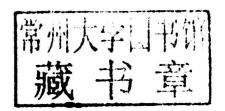

Third Edition

Analysis of Turbulent Flows with Computer Programs

Tuncer Cebeci



Analysis of Turbulent Flows with Computer Programs

THIRD EDITION

Tuncer Cebeci

Formerly Distinguished Technical Fellow, Boeing Company, Long Beach, California horizonpublishing.net

Butterworth-Heinemann is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA

First edition 1974 Second edition 2004 Third edition 2013

Copyright © 2013 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-08-098335-6

For information on all Elsevier publications visit our web site at books.elsevier.com

Transferred to Digital Printing in 2013

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AL

Sabre Foundation

Dedication

This book is dedicated to the memory of my beloved wife, Sylvia Holt Cebeci, my best friend of many years. She will always be with me, in my heart, in my memories and in all the loving ways she touched my life each day.

I will always remember her note to me on my birthday in 2011 prior to her death on May 4, 2012:

Dear TC,

The twilight times bring you automatic admission to a special club; to share the game of special 50's, 60's music; remembering your friends and death of a special friend; being a historian simply because you live long enough. You and I have been so fortunate to share a golden life everyday.

Love, Sylvia

Preface to the Third Edition

The first edition of this book, Analysis of Turbulent Boundary Layers, was written in the period between 1970 and early 1974 when the subject of turbulence was in its early stages and that of turbulence modeling in its infancy. The subject had advanced considerably over the years with greater emphasis on the use of numerical methods and an increasing requirement and ability to calculate turbulent two- and threedimensional flows with and without separation. The tools for experimentation were still the traditional Pitot tube and hot wire-anemometer so that the range of flows that could be examined was limited and computational methods still included integral methods and a small range of procedures based on the numerical solution of boundary layer equations and designed to match the limited range of measured conditions. There have been tremendous advances in experimental techniques with the development of non-intrusive optical methods such as laser-Doppler, phase-Doppler and particle-image velocimetry, all for the measurement of velocity and related quantities and of a wide range of methods for the measurement of scalars. These advances have allowed an equivalent expansion in the range of flows that have been investigated and also in the way in which they could be examined and interpreted. Similarly, the use of numerical methods to solve time-averaged forms of the Navier-Stokes equations, sometimes interactively with the inviscid-flow equations, has expanded, even more so with the rise and sometimes fall of Companies that wished to promote and sell particular computer codes. The result of these developments has been an enormous expansion of the literature and has provided a great deal of information beyond that which was available when the first edition was written. Thus, the topics of the first edition needed to be re-examined in the light of new experiments and calculations, and the ability of calculation methods to predict a wide range of practical flows, including those with separation, to be reassessed.

The second edition, entitled *Analysis of Turbulent Flows*, undertook the necessary reappraisal, reformulation and expansion, and evaluated the calculation methods more extensively but also within the limitations of two-dimensional equations largely because this made explanations easier and the book of acceptable size. In addition, it was written to meet the needs of graduate students as well as engineers and so included homework problems that were more sensibly formulated within the constraints of two independent variables. References to more complex flows, and particularly those with separation, were provided and the relative merits of various turbulence models considered.

xii Preface to the Third Edition

The third edition, entitled *Analysis of Turbulent Flows with Computer Programs*, keeps the structure of the first and second editions the same. It expands the solution of the boundary-layer equations with transport-equation turbulence models, considers the solution of the boundary-layer equations with flow separation and provides computer programs for calculating attached and separating flows with several turbulence models.

The second edition and the contents of this new edition should be viewed in the context of new developments such as those associated with large-eddy simulations (LES) and direct numerical solutions (DNS) of the Navier-Stokes equations. LES existed in 1976 as part of the effort to represent meteorological flows and has been rediscovered recently as part of the recognition of the approximate nature of solutions of time-averaged equations as considered here. There is no doubt that LES has a place in the spectrum of methods applied to the prediction of turbulent flows but we should not expect a panacea since it too involves approximations within the numerical method, the filter between time-dependent and time-average solutions and small-scale modeling. DNS approach also has imperfections and mainly associated with the computational expense which implies compromises between accuracy and complexity or, more usually, restriction to simple boundary conditions and low Reynolds numbers. It is likely that practical aerodynamic calculations with and without separation will continue to make use of solutions of the inviscid-flow equations and some reduced forms of the Navier-Stokes equations for many years, and this book is aimed mainly at this approach.

The first and second editions were written with help from many colleagues. AMO Smith was an enthusiastic catalyst and ideas were discussed with him over the years. Many colleagues and friends from Boeing, the former Douglas Aircraft Company and the McDonnell-Douglas Company, have contributed by discussion and advice and included K. C. Chang and J. P. Shao. Similarly, Peter Bradshaw, the late Herb Keller of Cal Tech and the late Jim Whitelaw of Imperial College have helped in countless ways.

Indian Wells

Tuncer Cebeci

Computer Programs Available from horizonpublishing.net

- 1. Integral Methods.
- 2. Differential Method with CS Model for two-dimensional flows with and without heat transfer and infinite swept-wing flows.
- 3. Hess-Smith Panel Method with and without viscous effects.
- **4.** Zonal Method for k- ε Model and solution of k- ε Model equations with and without wall functions.
- 5. Differential Method for SA Model and for a Plane Jet.
- **6.** Differential Method for inverse and interactive boundary-layer flows with CS Model.

Contents

Preface to the Third Edition		
1	Introduction	1
	1.1 Introductory Remarks 1.2 Turbulence – Miscellaneous Remarks	1 3 7
	1.3 The Ubiquity of Turbulence1.4 The Continuum Hypothesis	8
	1.5 Measures of Turbulence – Intensity	11
	1.6 Measures of Turbulence – Scale	14
	1.7 Measures of Turbulence – The Energy Spectrum	19
	1.8 Measures of Turbulence – Intermittency	22
	1.9 The Diffusive Nature of Turbulence	23
	1.10 Turbulence Simulation	26
	References	31
2	Conservation Equations for Compressible Turbulent Flows	33
	2.1 Introduction	33
	2.2 The Navier–Stokes Equations	34
	2.3 Conventional Time-Averaging and Mass-Weighted-Averaging	
	Procedures	35
	2.4 Relation Between Conventional Time-Averaged Quantities	
	and Mass-Weighted-Averaged Quantities	39
	2.5 Continuity and Momentum Equations	41
	2.6 Energy Equations	41
	2.7 Mean-Kinetic-Energy Equation	42
	2.8 Reynolds-Stress Transport Equations	44
	2.9 Reduced Forms of the Navier-Stokes Equations	48
	References	51
3	Boundary-Layer Equations	53
	3.1 Introduction	54
	3.2 Boundary-Layer Approximations for Compressible Flows	54
	3.2.1 Laminar Flows	55
	3.2.2 Turbulent Flows	59
	3.3 Continuity, Momentum, and Energy Equations	64
	3.3.1 Two-Dimensional Flows	64

vi Contents

	3.3.2 Axisymmetric Flows	69
	3.3.3 Three-Dimensional Flows	71
	3.4 Mean-Kinetic-Energy Flows	73
	3.5 Reynolds-Stress Transport Equations	74
	3.6 Integral Equations of the Boundary Layer	78
	3.6.1 Momentum Integral Equation	79
	3.6.2 Mean Energy Integral Equation	80
	3.6.3 Turbulent Energy Integral Equation	81
	3.6.4 Energy Integral Equation	82
	References	87
4	General Behavior of Turbulent Boundary Layers	89
	4.1 Introduction	90
	4.2 Composite Nature of a Turbulent Boundary Layer	90
	4.3 Eddy-Viscosity, Mixing-Length, Eddy-Conductivity and	
	Turbulent Prandtl Number Concepts	99
	4.4 Mean-Velocity and Temperature Distributions in Incompressible	
	Flows on Smooth Surfaces	104
	4.4.1 Viscous and Conductive Sublayers	107
	4.4.2 Fully Turbulent Part of the Inner Region	108
	4.4.3 Inner Region	109
	4.4.4 Outer Region	112
	4.4.5 Equilibrium Boundary Layers	116
	4.4.6 Velocity and Temperature Distributions for the Whole	
	Layer Velocity Profile	117
	4.5 Mean-Velocity Distributions in Incompressible Turbulent	
	Flows on Rough Surfaces with Zero Pressure Gradient	123
	4.6 Mean-Velocity Distribution on Smooth Porous Surfaces with	
	Zero Pressure Gradient	129
	4.7 The Crocco Integral for Turbulent Boundary Layers	131
	4.8 Mean-Velocity and Temperature Distributions in Compressible	
	Flows with Zero Pressure Gradient	135
	4.8.1 The Law-of-the-Wall for Compressible Flows	135
	4.8.2 Van Driest Transformation for the Law of the Wall	139
	4.8.3 Transformations for Compressible Turbulent Flows	140
	4.8.4 Law of the Wall for Compressible Flow with Mass Transfe	r 143
	4.9 Effect of Pressure Gradient on Mean-Velocity and Temperature	
	Distributions in Incompressible and Compressible Flows	145
	References	150
5	Algebraic Turbulence Models	155
	5.1 Introduction	156
	5.2 Eddy Viscosity and Mixing Length Models	156

	5.3 CS Model	160
	5.3.1 Effect of Low Reynolds Number	161
	5.3.2 Effect of Transverse Curvature	165
	5.3.3 Effect of Streamwise Wall Curvature	166
	5.3.4 The Effect of Natural Transition	168
	5.3.5 Effect of Roughness	172
	5.4 Extension of the CS Model to Strong Pressure-Gradient	
	Flows	175
	5.4.1 Johnson-King Approach	175
	5.4.2 Cebeci-Chang Approach	178
	5.5 Extensions of the CS Model to Navier-Stokes Methods	181
	5.6 Eddy Conductivity and Turbulent Prandtl Number Models	185
	5.7 CS Model for Three-Dimensional Flows	194
	5.7.1 Infinite Swept Wing Flows	196
	5.7.2 Full Three-Dimensional Flows	199
	5.8 Summary	203
	References	205
6	Transport-Equation Turbulence Models	211
	6.1 Introduction	211
	6.2 Two-Equation Models	215
	6.2.1 <i>k</i> -€ Model	215
	$6.2.2 k-\omega$ Model	221
	6.2.3 SST Model	224
	6.3 One-Equation Models	226
	6.3.1 Bradshaw's Model	227
	6.3.2 Spalart-Allmaras Model	228
	6.4 Stress-Transport Models	230
	References	235
7	Short Cut Methods	237
	7.1 Introduction	238
	7.2 Flows with Zero-Pressure Gradient	238
	7.2.1 Incompressible Flow on a Smooth Flat Plate	239
	7.2.2 Incompressible Flow on a Rough Flat Plate	248
	7.2.3 Compressible Flow on a Smooth Flat Plate	250
	7.2.4 Compressible Flow on a Rough Flat Plate	256
	7.3 Flows with Pressure Gradient: Integral Methods	257
	7.4 Prediction of Flow Separation in Incompressible Flows	264
	7.5 Free Shear Flows	268
	7.5.1 Two-Dimensional Turbulent Jet	268
	7.5.2 Turbulent Mixing Layer Between Two Uniform Streams	
	at Different Temperatures	273

viii Contents

		7.5.3 Power Laws for the Width and the Centerline Velocity of Similar Free Shear Layers	280
	Λ	ppendix 7A Gamma, Beta and Incomplete Beta Functions	281
		eferences	
	K	eletences	291
8	Dif	ferential Methods with Algebraic Turbulence Models	293
	8.1	Introduction	294
	8.2	Numerical Solution of the Boundary-Layer Equations with	
		Algebraic Turbulence Models	295
		8.2.1 Numerical Formulation	297
		8.2.2 Newton's Method	299
		8.2.3 Block-Elimination Method	301
		8.2.4 Subroutine SOLV3	302
	8.3	Prediction of Two-Dimensional Incompressible Flows	305
		8.3.1 Impermeable Surface with Zero Pressure Gradient	305
		8.3.2 Permeable Surface with Zero Pressure Gradient	307
		8.3.3 Impermeable Surface with Pressure Gradient	310
		8.3.4 Permeable Surface with Pressure Gradient	312
		Axisymmetric Incompressible Flows	315
	8.5	Two-Dimensional Compressible Flows	317
		8.5.1 Impermeable Surface with Zero Pressure Gradient	317
		8.5.2 Permeable Surface with Zero Pressure Gradient	320
		8.5.3 Impermeable Surface with Pressure Gradient	320
		Axisymmetric Compressible Flows	322
	8.7	Prediction of Two-Dimensional Incompressible Flows with	
		Separation	322
		8.7.1 Interaction Problem	324
	8.8	Numerical Solution of the Boundary-Layer Equations in the	
		Inverse Mode with Algebraic Turbulence Models	326
		8.8.1 Numerical Formulation	328
	8.9	Hess-Smith (HS) Panel Method	333
		8.9.1 Viscous Effects	340
		8.9.2 Flowfield Calculation in the Wake	342
		Results for Airfoil Flows	344
	8.11	Prediction of Three-Dimensional Flows with Separation	347
		References	354
)	Dif	ferential Methods with Transport-Equation Turbulence Models	357
	9.1	Introduction	358
	9.2	Zonal Method for k - ϵ Model	358
		9.2.1 Turbulence Equations and Boundary Conditions	359
		9.2.2 Solution Procedure	360

	9.3 5	Solution of the k - ϵ Model Equations with and without Wall	
		Functions	371
		2.3.1 Solution of the k - ϵ Model Equations without Wall Functions	371
		2.3.2 Solution of the k - ϵ Model Equations with Wall Functions	374
		Solution of the k - ω and SST Model Equations	375
		Evaluation of Four Turbulence Models	378
		0.5.1 Free-Shear Flows	379
		0.5.2 Attached and Separated Turbulent Boundary Layers	384
		0.5.3 Summary	389
		Appendix: Coefficients of the Linearized Finite-Difference	
		ations for the k - ϵ Model	392
		rences	407
10	Com	panion Computer Programs	409
		Introduction	411
		Integral Methods	412
	10.2	10.2.1 Thwaites' Method	412
		10.2.2 Smith-Spalding Method	412
		10.2.3 Head's Method	412
		10.2.4 Ambrok's Method	413
	10.3	Differential Method with CS Model: Two-Dimensional	
	10.5	Laminar and Turbulent Flows	413
		10.3.1 Main	413
		10.3.2 Subroutine INPUT	414
		10.3.3 Subroutine IVPL	416
		10.3.4 Subroutine GROWTH	417
		10.3.5 Subroutine COEF3	417
		10.3.6 Subroutine EDDY	417
		10.3.7 Subroutine SOLV3	418
		10.3.8 Subroutine OUTPUT	418
	10.4	Hess-Smith Panel with Viscous Effects	418
	10.1	10.4.1 Main	418
		10.4.2 Subroutine COEF	419
		10.4.3 Subroutine OBKUTA	419
		10.4.4 Subroutine GAUSS	419
		10.4.5 Subroutine VPDIS	419
		10.4.6 Subroutine CLCM	420
		10.4.7 Subroutine VPDWK	420
	10.5	Differential Method with CS Model: Two-Dimensional Flows	
		with Heat Transfer	420
	10.6	Differential Method with CS Model: Infinite Swept-Wing	
		Flows	421

x Contents

10.7	Differential Method with CS and k - ϵ Models: Components of			
	the Computer Program Common to both Models	421		
	10.7.1 MAIN	421		
	10.7.2 Subroutine INPUT	422		
	10.7.3 Subroutine IVPT	423		
	10.7.4 Subroutine GROWTH	423		
	10.7.5 Subroutine GRID	423		
	10.7.6 Subroutine OUTPUT	423		
10.8	Differential Method with CS and k - ϵ Models: CS Model	424		
	10.8.1 Subroutine COEFTR	424		
	10.8.2 Subroutine SOLV3	424		
	10.8.3 Subroutines EDDY, GAMCAL, CALFA	424		
10.9	Differential Method with CS and k - ϵ Models: k - ϵ Model	425		
	10.9.1 Subroutines KECOEF, KEPARM, KEDEF			
	and KEDAMP	425		
	10.9.2 Subroutine KEINITK	427		
	10.9.3 Subroutine KEINITG	428		
	10.9.4 Subroutine KEWALL	428		
	10.9.5 Subroutine KESOLV	428		
	10.9.6 Test Cases for the CS and k - ϵ Models	429		
	10.9.7 Solution Algorithm	429		
	Differential Method with CS and k - ϵ Models: Basic Tools	431		
	Differential Method with SA Model	431		
	Differential Method for a Plane Jet	432		
10.13	Useful Subroutines	432		
	10.13.1 Subroutine IVPT	432		
	10.13.2 Subroutine SOLV2	432		
10.14	4 Differential Method for Inverse Boundary-Layer Flows			
	with CS Model	432		
	10.14.1 Subroutine INPUT	433		
	10.14.2 Subroutine HIC	434		
10.15	Comparison Computer Programs	435		
	10.15.1 Sample Calculations for the Panel Method without			
	Viscous Effects	435		
	10.15.2 Sample Calculations for the Inverse			
	Boundary-Layer Program	438		
	10.15.3 Sample Calculations with the Interactive	and the second		
	Boundary-Layer program	439		
	References	446		
Index		447		

Chapter

Introduction

Chap	oter	Out	ine	Head
			222	

1.1 Introdu	ctory Remarks	1
1.2 Turbule	nce – Miscellaneous Remarks	3
1.3 The Ub	iquity of Turbulence	7
1.4 The Co	ntinuum Hypothesis	8
1.5 Measur	es of Turbulence – Intensity	11
1.6 Measur	es of Turbulence – Scale	14
1.7 Measur	es of Turbulence – The Energy Spectrum	19
1.8 Measur	es of Turbulence – Intermittency	22
1.9 The Dif	fusive Nature of Turbulence	23
1.10 Turbulence Simulation		26
Problems		29
References		31

1.1 Introductory Remarks

Turbulence in viscous flows is described by the Navier-Stokes equations, perfected by Stokes in 1845, and now soluble by Direct Numerical Simulation (DNS). However, computing capacity restricts solutions to simple boundary conditions and 1

moderate Reynolds numbers and calculations for complex geometries are very costly. Thus, there is need for simplified, and therefore approximate, calculations for most engineering problems. It is instructive to go back some eighty years to remarks made by Prandtl [1] who began an important lecture as follows:

What I am about to say on the phenomena of turbulent flows is still far from conclusive. It concerns, rather, the first steps in a new path which I hope will be followed by many others.

The researches on the problem of turbulence which have been carried on at Göttingen for about five years have unfortunately left the hope of a thorough understanding of turbulent flow very small. The photographs and kineto-graphic pictures have shown us only how hopelessly complicated this flow is ...

Prandtl spoke at a time when numerical calculations made use of primitive devices – slide rules and mechanical desk calculators. We are no longer "hopeless" because DNS provides us with complete details of simple turbulent flows, while experiments have advanced with the help of new techniques including non-obtrusive laser-Doppler and particle-image velocimetry. Also, developments in large-eddy simulation (LES) are also likely to be helpful although this method also involves approximations, both in the filter separating the large (low-wave-number) eddies and the small 'sub-grid-scale' eddies, and in the semi-empirical models for the latter.

Even LES is currently too expensive for routine use in engineering, and a common procedure is to adopt the decomposition first introduced by Reynolds for incompressible flows in which the turbulent motion is assumed to comprise the sum of mean (usually time-averaged) and fluctuating parts, the latter covering the whole range of eddy sizes. When introduced into the Navier–Stokes equations in terms of dependent variables the time-averaged equations provide a basis for assumptions for turbulent diffusion terms and, therefore, for attacking mean-flow problems. The resulting equations and their reduced forms contain additional terms, known as the Reynolds stresses and representing turbulent diffusion, so that there are more unknowns than equations. A similar situation arises in transfer of heat and other scalar quantities. In order to proceed further, additional equations for these unknown quantities, or assumptions about the relationship between the unknown quantities and the mean-flow variables, are required. This is referred to as the "closure" problem of turbulence modeling.

The subject of turbulence modeling has advanced considerably in the last seventy years, corresponding roughly to the increasing availability of powerful digital computers. The process started with 'algebraic' formulations (for example, algebraic formulas for eddy viscosity) and progressed towards methods in which partial differential equations for the transport of turbulence quantities (eddy viscosity, or the Reynolds stresses themselves) are solved simultaneously with reduced forms of the