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SUMMARY

The problem of assessing and interpreting models of
systems, when only small sets of observations are available,
is introduced and discussed. System identification is
defined as the proaression from a set of observations of
the behaviour of a system, to a theory which accounts for
that behaviour. The concepts of algorithmic information
theory are drawn on to develop a characterisation of modelling,
which constitutes a partial solution to the problem of system
identification, while taking account of the size of the set
of available observations. A model is defined to be an
algorithm for computing the output observation set of a system
under specified restrictions.

A general criterion of the quality of a model, its
"information gain", is proposed, and its consistency with
more conventional criteria is discussed. It is proved that
no "universal modelling algorithm" can exist, in the sense
that it is not possible, in general, to find the model with
the highest information gain.

Information gain is a suitable criterion for a wide class
of models, including nonlinear dynamical stochastic models,
and its computation is straightforward. The use of information
gain for the assessment of rival models is demonstrated.

The calculation of information gain requires that the model
be expressed as a computer program. The choice of programming
language is associated with the modeller's a priori beliefs
about the system. It is shown that this choice becomes

insignificant as the observation sets become large. A detailed



v

investigation shows that it is possible to speak precisely
of "the smallest language" required to run a particular
program. A priori knowledge assumed about a system can
therefore be considered to be defined by the smallest language
required to run the model.

Finally, the effect on model assessment of the manner in
which system observations are coded is examined. It is found
that a "safe" coding exists, which often leads to the same

assessment as would the use of most other codings.
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1. INTRODUCTION

11 Motivation

The areas in which the scientific method has been
demonstrably and spectacularly successful are characterised
by the possibility of performing experiments, or making
observations, more or less freely whenever these are deemed
desirable. The result of this has been that explicit
consideration of the size of the set of observations from
which a model is hypothesised, and to which a model is
fitted, has been neglected. Any doubts which arise about
the model can be resolved by further experimentation and
observation.

This pleasant property increasingly disappears as one
enters the domains of complex industrial processes, environ-
mental control systems, management systems, and socio-
economic systems. The work described here aims to clarify
the relationship between the smallness of the available
observation sets for such systems and the degree of usefulness
of the models obtained for them.

Until recently, the class of models which could be used
in scientific investigations was restricted by a very practical
consideration. The behaviour of the model had to be
understood, and that understanding could only be obtained from
the theory of the model. The model was constrained to be

sufficiently simple for theoretical investigation to be



possible.

The availability of the computer has changed this
situation radically. It is now possible to investigate
the behaviour of a model by simulation, with hardly any
theoretical understanding of it. Consequently this constraint
on the complexity of useful models has been removed, or at
least greatly relaxed. It is now possible to postulate a
complicated model structure, to observe its simulated
behaviour, and to adjust the details of the model until its
simulated behaviour resembles the behaviour of the system being
investigated.

When is such a model useful? When does it give any
understanding of how the system really works? When can it
be used as a reliable guide to how the system will behave in
the future? The purpose of the work reported in this thesis
is to throw some light on these questions. A further aim
is to investigate how rival models of the same system
behaviour should be assessed. Most of the thesis is
ostensibly concerned with the details of rival model assessment,
but it is clear that the ability to distinguish between
competing models is intimately connected with the ability to
say how good an isolated model is.

Why should a simulation model of the type described
above not be useful or reliable? If it reproduces the
observed system behaviour, is that not sufficient evidence to

indicate the quality of the model? In fact, is it not clear



that the better the reproduction of the observed behaviour,
the better the model? Our answer is no. The basic reason
is the possibility of "overfitting" the model, since its
complexity is relatively unconstrained, and it is being
checked against a small set of data.

Consider the following simple example. Suppose that
two measurements are taken of some variable at two different
times, and that we have no other information about it. Tt
is desired to predict the value of the variable at some third
time. If a linear variation with time of the variable is
proposed, on the basis of the two observations, then it is
clear that the only reasonable assessment of confidence in
the prediction of the model is nil. The predicted value
is no more likely (in an intuitive sense) than any other
value. However, if a third measurement is taken which
agrees with the prediction of the model, confidence in the
model immediately increases. It is now possible to say
that values predicted by the model are better predictions,
in some sense, than mere guesses. If further measurements
are taken, and these also agree with the predictions of the
model, then confidence in the model increases very quickly.
It never amounts to certainty, of course, but after only ten
observations, say, one would have little doubt that the next
prediction would be correct (which does not imply that it
would be).

The confidence which one is willing to ascribe to this

model clearly depends on the difference between the number



of observations which it "explains" and the number of
observations required to construct the model. If all of
the available observations are used to construct the model,
then we have no confidence in its predictions. This
situation can also be described by saying that if the number
of arbitrary decisions that have been made about the model,
in order to make it fit the observations,is the same as- the
number of observations, then we have no confidence in the
model.

This point was made succinctly by Poincar€, when he
dismissed Jeans' classical explanation of the ultraviolet
catastrophe and the specific heat of solids (1):

"It is obvious that by giving suitable dimensions

to the communicating tubes between his reservoirs

and giving suitable valuesto the leaks, Jeans can

account for any experimental results whatever.

But this is not the role of physical theories.

They should not introduce as many arbitrary constants

as there are phenomena to be explained; they should

establish connections between different experimental

facts, and above all they should allow predictions
to be made."

On the other hand, the accuracy with which the model
reproduces the observed behaviour is clearly significant.
If only a slight increase in complexity results in a large
increase in accuracy, then in some sense fewer "arbitrary
constants" have been added to it than the additional
"number of phenomena" which it now explains. What is
required formodel assessment is some "trade-off" between

the complexity of a model and its accuracy. A prerequisite



for this is a measure of complexity which is applicable to

a wide class of models. A major innovation introduced in
this work is the casting of models in such a form, that
poorness of fit of model behaviour to the observed behaviour
appears as a component of model complexity. The required
trade-off is thus achieved by assessing model complexity in
a suitable manner.

A more qQrthodox approach to the problem of model
assessment would be to examine the assessment of models
chosen from a small class, and to postulate some statistical
framework. It may then be possible to formulate the assess-
ment problem as a statistical decision problem. This type
of approach has indeed been investigated, even for dynamical
models of the type encountered in control studies (2) (3) (4)
(5). We do not follow such an approach for the following
reasons.

Any method arrived at from statistical considerations
will be appropriate only for a narrow class of models
(such as linear difference-equation models, for example),
set in a particular (statistical) environment (such as
"observations corrupted by white, Gaussian, additive noise").
Such a method will not be useful if two very different models
are being compared - for example, if the system being
investigated is the behaviour of competing firms in some
market, it may be desired to compare a model based on

Forrester's "Industrial Dynamics" techniques (6) with a model



which uses game theory (7) to explain firms' actions and the
market's responses.

Realistic simulation models often contain nonlinear
elements. When such models are also dynamical, it is
usually extremely difficult to describe the evolution of
the probability distributions of relevant variables (8).
Furthermore, when investigating environmental and socio-
economic systems, the most interesting and important behaviours
often occur under transient conditions. When modelling these,
it may not be appropriate to assume stationariness of relevant
processes. Finally,when few observations of a system are
available, and there is little a priori knowledge about it,
the statistical specification of the system's environment
may itself be very uncertain. In this case little is lost
by not assuming it to be known; in fact, misleading
conclusions may be avoided.

These considerations indicate that it may be more
fruitful to investigate the assessment of models of complex,
poorly understood systems by making as few assumptions as
possible and examining the general situation, rather than
by a painstaking and difficult analysis of each model

structure, as it arises.

1.2 Overview of Approach and Results.

We develop a characterisation of modelling which has

three "components": the system to be modelled, a model of



this system, and a criterion of quality of the model.

The system to be modelled is taken to be defined by a
pair of sets of observations of its input and output.

Since measurements are always obtained with limited resolution
and accuracy, each observation is assumed to be rationai.

Each set of observations is assumed to be finite. The

system therefore looks like a set of discrete-state,
discrete-time measurements. However, it will become evident
that this does not constrain the models of such a system to

be of the same category. It merely reflects the realities

of data collection. A system will be defined in more

detail in sec. 1.3.

A model of the system is any algorithm which maps
certain subsets of the observations onto the output
observations. This definition is broadenough to admit
algorithms which would not normally be of much interest,
such as those whose interpretation implies a reversed
direction of time, or even a lack of any time ordering. It
also allows algorithms which compute functions defined only
on the particular observations obtained. These are useless
for deducing how the system may behave in a new situation
(presumably the goal of the modelling exercise), but models
of this type will serve as a reference, with respect to which
the success of the modelling exercise will be assessed.

Any restriction to models of a particular type is accomplished

by specifying which subsets of the observations lie in the



domain of the algorithm, and which elements of the output
observations are to be the corresponding images.

For example, deterministic difference equation models
need only map successive blocks of input observations to
successive outputs, whereas stochastic predicting models of
the Wiener - Kolmogorov or Kalman types must map successive
blocks of input and past output observations to successive
outputs.

The term "algorithm" may be interpreted as "computer
program". Thus we think of models as programs for computing
the output observations, and these programs may use the
specified subsets of the observations to help them in this
task. This viewpoint would be excessively arbitrary, if
it were not for the power of Church's Thesis (9), which
states that any procedure which satisfies the intuitive
notion of an "algorithm" can be expressed in any one of the
equivalent formalisations of the theory of algorithms, and
hence can be expressed as a computer program.

When the model is written as a computer program in
some programming lanaguage, the criterion of quality is
taken to be the shortness of that program, as measured by
the number of characters in the program. The length of
the program is a measure of the number of arbitrary decisions
which have been male (relative to the programming language)
in constructing the model. Furthermore, a model is required
to compute the output observations exactly (to the accuracy

with which the observations were originally made). In order



to do this, the model must generate internally those terms
which would conventionally be thought of as "fitting errors".
Since the programming language has a finite number of
terminals, the length of the model increases when these
terms increase. The criterion of quality thus incorporates
a particular trade-off between complexity and approximation.

The above characterisation of modelling is explained in
more detail in Chapter 3. Support for it is given in section
225 The essence of this support is that the length ot
the shortest program required to compute a sequence displays
properties analogous to the properties of the entropy
associated with a probability space. In particular, a
long sequence, which requires a maximally long program to
compute it, passes every effective test for randomness
(asymptotically, with probability 1). This suggests that
the amount by which it is possible to "compress" the program
(model) required to compute a set of observations (system)
represents the amount of information which it has been
possible to extract from the observations. If the only
model which has been found is one that merely reads out the
observations from a look-up table, then no "compression"
has been achieved, and such a model conveys no information
about the observations.

A consequence of our characterisation is that no
algorithm can exist for finding the best model (according to

the above criterion of quality) of an arbitrary system.
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The choice of programming language to be used, for
assessing the quality of a model, can be viewed as the
specification of "what is to be taken for granted". It
should therefore be made in the light of the modeller's
a priori knowledge about the system, and of the purposes of
the modelling exercise. In Chapter 4 this connection is
examined more closely. It is shown that, if the observation
sets are large enough, then the results of model assessment
are independent of the choice of programming language.

This can be interpreted to mean that the modeller's a priori
beliefs become less significant as the set of observations
available to him grows.

Nevertheless, the assessment of models of small

observation sets is dependent on the modeller's specification

of his a priori beliefs. Consequently such an assessment
cannot be taken to be definitive. However, this is

mitigated by the fact that the modeller does not need to
choose between mutually exclusive sets of a priori beliefs:
he can stipulate programming lanaguages which imply a greater
or smaller state of knowledge.

Several different models, even when written in the same
language, will rarely use exactly the same features of that
language. It is therefore questionable whether a comparison
of their lengths givesa measure of their complexity relative
to the same set of assumptions. Chapters 5 and 6 resolve
this difficulty. Chapter 5 develops a formal equivalent

of "a program makes use of such-and-such facilities of a



