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Preface

For mathematicians, topology is a fundamental mathematical language widely used
in many fields. For students, topology is an intellectually challenging and rewarding
subject. This textbook aims to address the subject of topology from both angles.
The development of the content is based on the following considerations.

First, the topology theory has the point set as well as the combinatorial (or
algebraic) aspects. This book intends to give students a more comprehensive view
of topology. So materials in point set topology and combinatorial topology are
arranged in alternating chapters. Of course only the most basic topics can be
covered in a semester. This means point set topology up to Hausdorff, connected,
and compact properties, and combinatorial topology up to the Euler number and
the classification of surfaces. A final chapter is added to cover the important and
useful topics in point set topology. The topics in the final chapter are not covered
in my lecture.

Second, the basic topological theory is a tool used for describing certain aspects
of mathematics. So we should keep in mind how the topology is actually used in
the other fields of mathematics. For example, the topologies are always introduced
from topological basis or subbasis in practical applications. Therefore this book
introduces the topological basis before the concept of topology, and emphasizes
how to “compute” the topological concepts by making use of topological basis.

Third, the theory of point set topology can be very abstract, and the axiomatic
approach can be daunting for students. This book starts with metric spaces, which
is more concrete and familiar to students. The topological concepts are defined.
from the viewpoint of metrics but are quickly reinterpreted in terms of balls. Later
on, by replacing the balls with the topological basis, students can easily understand
the same concepts in the more abstract setting.

Fourth, the effective learning of abstract theory requires lots of pxacmce The
book contains plenty of exercises. Moreover, the exercises immediately follow dis-
cussions, instead of being listed separately at the end of sections. Many exercises
require the students to compute topological concepts in very specific and concrete
topological spaces. There are also many exercises that ask the students to prove
some basic results, some of which are used in the proofs.

The book was originally the lecture note for my topology course in The Hong
Kong University of Science and Technology. I would like to thank the university
and enthusiastic students for their support.

Min Yan
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Chapter 1. Set and Map

1.1 Set

Sets and elements are the most basic concepts of mathematics. Given any element
z and any set X, either z belongs to X (denoted z € X), or x does not belong to
X (denoted z ¢ X). Elements are also figuratively called points.

Example 1.1.1. A set can be presented by listing all its elements.

1
2
3.
4

&,

. X1={1,2,3,...,n} is the set of all integers between 1 and n.
. Xz = {2, —5} is the set of all numbers satisfying the equation z? + 3z — 10 = 0.
X3 ={a,b,c,...,T,y,2} is the set of all latin alphabets.

. X4 = {red, green, blue} is the set of basic colors that combine to form all the colors
human can see.

Xs = {red, yellow} is the set of colors on the Chinese national flag.

The set Xg of all registered students in the topology course is the list of names
provided to me by the registration office.

Example 1.1.2. A set can also be presented by describing the properties satisfied by the
elements.

1. Natural numbers N = {n: n is obtained by repeatedly adding 1 to itself}.

© ® N> o W

-
o

Prime numbers P = {p: p € N, and the only integers dividing p are + 1 and =+ p}.
Rational numbers Q = {r: r is a quotient of two integers}.

Open interval (a,b) = {z: z € R,a < = < b}.

Closed interval [a,b] = {z: z € R,a < z < b}.

Real polynomials R[f] = {ao + a1t + a2t + - - - +a.t™: a; € R}.

Continuous functions C[0,1] = {f: lim:—q f(¢) = f(a) for any 0 < a < 1} on {0, 1].
Unit sphere S? = {(1,%2,%3): =; € R, 23 + ¢} + 2} =1} in R®,

X1 = {z: £ € N,z < n}, the first set in Example 1.1.1.

X, = {z: 22 + 3z — 10 = 0}, the second set in Example 1.1.1.

Exercise 1.1.1. Present the following sets: the set Z of integers, the unit sphere S™ in R™*?,
the set GL{n) of invertible n x n matrices, the set of latin alphabets in your name.

Exercise 1.1.2. Provide suitable names for the following subsets of R2.

& W N =

. {(z,y): = =0}.
Al y):z =y}
@)+ =4},
Az y): 2 +y? > 4}

. A=, y):y <0}

Az, y): 2%+ 47 =4}

- (@, y): |zl + |y <1}
{(y):|z] < 1]y <1}

o N o >

A set X is a subset of Y if x € X implies £ € Y. In this case, we denote

X CY and say “X is contained in Y”, or denote Y O X and say “Y contains X”.

The

subset relation has the following properties:
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o reflexivity: X C X.
o antisymmetry X CY, Y CX &< X =Y.
o transitivity: X CY,)YCZ —= X CZ.

When the subsets are presented by properties satisfied by elements, the subset
relation is the logical relation between the properties. For example, the subset
relation {n: n? is even} C {n: n is even} simply means “if n? is even, then n is
even”.

The special notation @ is reserved for the empty set, the set with no element.
The empty set is a subset of any set.

The power set P(X) of a set X, also denoted as 2%, is the collection of all
subsets of X. For example, the power set of the set {1,2,3} is

P{1,2,3} = {0, {1}, {2}, {3}, {1,2}, {1, 3}, {2,3}, {1,2,3}}.

The power set demonstrates that sets themselves can become elements of some
other set, which we usually call a collection of sets. For example, the set

{0, {1,2}, {1,3}, {2,3}}

is the collection of subsets of {1,2,3} with even number of elements.

Collections of sets appear quite often in everyday life and will play a very
important role in the development of point set topology. For example, the set
Parity = {Even, Odd} is actually the collection of two sets

Even={...,~4,-2,0,2,4,...}, Odd=1{...,-3,-1,1,3,5,...},
and the set Sign = {+, —, 0} is the collection of three sets
+={z:2>0}, —={z:2<0}, 0={0}.
Exercise 1.1.3. How many elements are in the power set of {1,2,...,n}? (The answer

suggests the reason for the notation 2*.) How many of these contain even number of
elements?

Exercise 1.1.4. List all elements in P(P{1,2}), the power set of the power set of {1,2}.

Exercise 1.1.5. Show that the set of numbers z satisfying 2° = 6z — 8 is the same as the
set of even integers between 1 and 5.

Exercise 1.1.6. For any real number € > 0, find a real number § > 0, such that
{z:lz -1 <8} c {z: |2® - 1| < €}.

Exercise 1.1.7. Find a number n € N, such that

m
m2+1

{m:m>n}C{m: ’ '<0.0001}.
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Exercise 1.1.8. For r > 0, let
D, = {(z,y) € R?: &” + y* <77},
S, ={(zy) eR*: |zg| <, Jy| <7}
What is the necessary and sufficient condition for D C S,+? What is the necessary and

sufficient condition for S,» C D,?

Exercise 1.1.9. A set X is a proper subset of Y if X C Y and X # Y. Prove that if
X CY C Z, then the following are equivalent.

1. X is a proper subset of Z.
2. Either X is a proper subset of Y, or Y is a proper subset of Z.

New sets can be constructed from the existing ones by the following basic
operations:
o unjon: XUY ={z:z€XorzeY}
o intersection: X NY ={zr:z € X andz €Y}.
o difference: X - Y ={z:z€ X andz ¢ Y}.
product: X XY = {(z,y): 2 € X,ye Y}

Two sets X and Y are disjoint if X NY = 0. In other words, X and Y share no
common element. The union of disjoint sets is sometimes denoted as X LY, called
disjoint union. If Y C X, then X — Y is also called the complement of Y in X.
Moreover, X™ denotes the product of n copies of X.

union intersection difference product

Figure 1.1.1. set operations

Some set operations can be extended to a collection {X;: i € I} of sets:
e union: U;X; = {x: z € X; for some i € I}
e intersection: MN;X; = {z: z € X; for all ¢ € I}.
e product: x;X; = {(z;)ier: z; € X; for each i € I}.

We also have the disjoint union LI; X; when the collection is pairwise disjoint: X; N
X; =0in case i # j.
The union and the intersection have the following properties:
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XNYcXcXuY,Xud=X,Xn0=49.

commutativity Y UX =X UY,YNX=XnNY.
associativity: (X UY)UZ=XU Y UZ),(XNY)NZ=XN({Y N2Z).
o distributivity: (XUY)NZ = (XNZ)U(YNZ), (XNY)UZ = (XUZ)N(YUZ).

The properties are not hard to prove. For example, the proof of the associativity of
the union involves the verification of (XUY)UZ C XU(YUZ) and (XUY)UZ D
X U(Y UZ). The first inclusion is verified below.

ze(XUY)UZ = zrzeXUYorzeZ
—~zecXorzxcYorxecZ
= ze€XorzeYUZ
= reXU(YUZ).

The second inclusion can be verified similarly.

The properties for the union and the intersection can be extended to any
(especially infinite) union and intersection.

The difference has the following properties:

e X-Y=0< XCVY.
e X -Y=X << XnNnY =9.
eYCX — X—-(X-Y)=Y.

de Morgan’s Law': X — (YU Z) = (X -Y)N(X-2), X-(YNZ) =
(X -Y)U(X — 2).

Note that de Morgan’s law basically says that the complement operation exchanges
the union and the intersection. The property can be extended to any union and
intersection.

When several operations are mixed, we have a rule similar to the arithmetic
operations. Usually the product x is taken first, then the union U or the intersection
N'is taken, and finally the difference — is taken. For example, x € (X —Y x Z)NW —-U
meansz € X,z ¢Y xZ, xecW,andz ¢ U.

Exercise 1.1.10. What are the following sets?
L. {n: n is even} N {n: n is divisible by 5}.
2. {n: nis a positive integer} U {n: n is a negative integer} U {0}.
3. {n: niseven}U{n: |n| < 10 and 7 is an integer} — {n: n # 2} N {n: n® # 6n — 8}.
4. {z:1 <z <10} — {z: 2z is an integer} N {z: 623 + 522 — 33z + 18 = 0}.

1 Augustus de Morgan, born June 27, 1806 in Madurai, India, died March 18, 1871 in London,
England. De Morgan introduced the term “mathematical induction” to put the proving method
on a rigorous basis. His most important contribution is to the subject of formal logic.



6 Chapter 1. Set and Map

5. {£:2> 0} x {y: [y <1} —{(=z,y): z+y <1} — {(z,9): = > y}-
6. {(z,y): x> +y? <1} — {z: 2 > 0}*.

Exercise 1.1.11. Prove the properties of set operations.

1. (XNY)NZ=XnNn(YnN2Z). 5, (X-Y)UY -X)=XUY-XnY.
2. (XNY)UZ=(XuzZ)n(Yuz). 6. (X-Y)N({Y —-X)=0.

3. X-¥Yn2)=(X-Y)Uu(X-2). 7. Xx(YNZ)=(X xY)N(X x Z).
4 XuY-Z=(X-2)u(Y - 2). 8 XxY-XxZ=Xx(Y-2).

Exercise 1.1.12. Find all the unions and intersections among A = {0}, B = {0, A}, C =
{0, A, B}.

Exercise 1.1.13. Express the following using sets X, Y, Z and operations U, N, —.
1. A={z:z€Xand{(z €Y or z € Z)}.
2. B={z: (wecXandze€Y)orzel}
3.C={z:zeX,z¢Y,andz € Z}.
Exercise 1.1.14. Let A and B be subsets of X. Prove that
ACB +<—= X-ADX-B < ANn(X-B)=40.

Exercise 1.1.15. Which statements are true?

1. XCZandYCZ = XUYCZ 1. XNY—-Z=(X-2Z)n(Y - 2).
2.XCcZandYCZ = XNnYCZ 12. XN(Y-2)=XNY—-XnN2Z.
3. XCZorYCZ — XUYCZ. 15 XU(Y - 2)= XUY - XUZ.
4 ZCcXandZCY = ZCXnNY. 4 (XNYIU(X - x
5. ZCXandZCY = ZC XUY. - JUX-Y)=X.
6. ZCXNY = ZCXandZcy. 15 XCUandYCV

— X xYCUxV.
7. Z2CXUY = ZCXandZCY.
8. X —(Y—2)=(X—-Y)UZ. 16. Xx(UuV)=XxUUX xV.
9. (X-Y)-Z=X-YUZ. 17 X x (U-V)=XxU—-X x V.
10 X (X -2)=Z. 18. (X—-Y)x(U-V)=XxU~-YxV.

Exercise 1.1.16. The union X UY of two sets X and Y is naturally divided into a union of
three disjoint subsets X —Y,Y — X and X NY.

1. How many pieces can the union of three sets be naturally divided into?

2. Express the pieces in the first part in terms of the set operations. (One such piece
is X — (Y U 2), for example.)

3. How many pieces constitute the union of n sets?
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1.2 Map

A map from a set X to aset Y is a process f that assigns, for each z € X, a unique
y = f(z) € Y. The process should be well-defined in the following sense:

o applicability: The process can be applied to any input z € X to produce some
output f(z).

e unambiguity: For any input z € X, the output f(z) of the process is unique.
In other words, the process f is single-valued.

In case Y is-a set of numbers, the map f is also called a function.
A map f from X to Y is usually denoted as

f: XY 2 f(x),

or
f@)=y: X =Y.

The sets X and Y are the domain and the range of the map. The point y is the
image (or the value) of z.

Figure 1.2.1. domain, range, image

Example 1.2.1. The map f(z) = 2z® — 1: R — R (equivalently, J:RoR, 2+ 222 —1)
means the following process: Multiply z to itself to get z2. Then multiply 2 to get 2z2.
Finally subtract 1 to get 2z¢® — 1. Since each step always works and gives unique cutcome,
the process is a map.

Example 1.2.2. The square root function f(z) = \/z: [0, c0) — R is the following process:
For any z > 0, find a non-negative number y, such that multiplying y to itself yields z.
Then f(z) = y. Again, since y always exists and is unique, the process is a map.

If [0, 00) is changed to R, then y does not exist for negative z. So the applicability
condition is violated, and the process /Z: R — R is not a map.

If the process is modified by no longer requiring y to be non-negative. Then the
process can be applied to any z € [0, 00), except there will be two outcomes (one positive,
one negative) in general. So the unambiguity condition is violated, and the process is
again not a map.

Example 1.2.3. The map R¢(z1,22) = (x1c0s0 — z25in8, 2, sind + x5 cosf): R® — R? is
the process of rotating points on the plane around the origin by angle # in the counter-
clockwise direction.
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Example 1.2.4. The map Age: X¢ — N is the process of subtracting the birth year from
the current year. The map Instructor: Courses — Professors takes the course to the
professor who teaches the course. For example, the map “Instructor” takes “topology” to

4§ £

me”.

Example 1.2.5. For any set X, the identity map is
idx(z)=z: X — X,
and the diagonal map is
Ax(z) = (z,z): X — X°.
For any sets X, Y and fixed b € Y, the map
c(z) =b: X =Y
is a constant map. Moreover, there are two projection maps
mx(@my)=2: X XY =X, wv(z,y)=y: X xY oY,

from the product of two sets.

Exercise 1.2.1. The following attempts to define a “square root” map. Which are actually
maps?

1. For z € R, find y € R, such that y% = 2. Then f(z) = y.

For z € [0, c0), find y € R, such that y? = z. Then f(z) = y.

For z € [0, 00), find y € [0, %), such that y® = z. Then f(z) = .

. For x € {1, 00), find y € [1, 00), such that y*> = z. Then f(z) = y.

. For z € [1, 00), find y € (—o0, —1], such that y* = z. Then f(z) = y.

- For z € [0,1), find y € [0,0), such that y* = z. Then f(z) = y.

. For x € [1,00), find y € (—o0, —4] U [1, 2), such that y? = z. Then f(z) =y.

Exercise 1.2.2. Describe the processes that define the maps.
1. 2": Z > R.

. sin: R — R,

Angle: Ordered pairs of straight lines in R? — [0, 27).

Area, : Rectangles — [0, 00).

Area, : Triangles — [0, o).

Absolute value: R — R.

SR NN

Exercise 1.2.3. Suppose we want to combine two maps f: X — Z and g:Y > Ztoget a
newmap h: XUY — Z by

h(z) = {f(w), ifre X,
9(z), ifzeY.

What is the condition for h to be a map?
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The image of a subset A C X under amap f: X - Y is
f(A) ={f(a):ae A} ={y € Y: y = f(a) for some a € A}.
In the other direction, the preimage of a subset B C Y is
f74(B) = {=: f(z) € B}.

The image and the preimage have the following properties: The image and the
preimage have the following properties:

e f(A)C B < AcC fi(B).

e ACA = f(A)C f(4").

e« BCB = fYB)cfYB).
o fAUA) = f(4) U f(A).

o [TH{BUB) =f"Y(B)UfH(B).
o f(ANA) C f(A) N f(A").
o [FHBNB)=f"Y(B)nf(B).

X - f7X(B) = 1Y - B).
e AC f7Y(B) < f(A)cB.

The properties can be extended to any union and intersection.

Example 1.2.6. Both the domain and the range of the map f(z) = 222 — 1: R — R

are R. The image of the whole domain is f(R) = [—1,00). The image of [0, 0) is also

[~1,00), and the image of [1,0) is [1,00). The preimage of [0,c0) and 1 are respectively
1 1

( 00, \/5] u [\/ﬁ,oo) and {1,-1}.

Both the domain and the range of the rotation map Re: R? — R? are R2. The image
and the preimage of any circle centered at the origin are the circle itself. If the circle is not
centered at the origin, then the image and the preimage are still circles, but at different
locations.

The preimage Age *(20) is all the 20-year-old students in the class. The preimage
Instructor ! (me) is all the courses I teach.

Exercise 1.2.4. Find the image and the preimage of a straight line under the rotation map
Rg. When is the image or the preimage the same as the original line?

Exercise 1.2.5. Show that in the property f (ANA") C f(A)N f(A"), the two sides are not
necessarily the same.

Exercise 1.2.6. Which statements are true? If not, whether at least some directions or
inclusions are true?



