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Preface

Fluorescence microscopy is a very powerful tool in that it allows quanti-
tative spatial and temporal visualization of fluorescent material in micro-
scope specimens. Because of this capability, numerous investigators have
turned to this technology to address questions of fundamental biological
importance. Having used fluorescence microscopy in my own research, I
am often asked an array of questions about this technology, and espe-
cially, where individuals can turn to learn more about this subject. While
many excellent texts and monographs exist which cover various aspects
of fluorescence and microscopy, the lack of a concise comprehensive
source for this information was a major motivation for writing this book.
I hope to have relayed my understanding of the important principles and
applications of fluorescence microscopy, and that this book will serve as a
broad introduction for new users to the variety of information that can be
gathered with fluorescence microscopy.

Much of the information presented in this book is the result of the sub-
stantial contributions of many of my colleagues. While the list is long, par-
ticularly important contributions were made by David Albertini, Richard
Berlin, John Bogan, Ludwig Brand, Robert Clegg, Jim DiGuiseppi, Pamela
Diliberto, Fred Fay, Salvatore Fernandez, Kathryn Florine-Casteel, Hans
Gerritsen, Gerry Gordon, Enrico Gratton, Charles R. Hackenbrock,
Richard Haugland, Richard Inman, Shinya Inoué, Colin Izzard, Ken
Jacobson, Tom and Donna Jovin, Joe Kao, Hans Kapitza, Ernst Keller,
Dennis Koppel, Joseph Lakowicz, John Lederer, John J. Lemasters, Leslie
Loew, Steve Lockett, Fred Maxfield, Butch Moomaw, Stephen Morris, John
Murray, Ammasi Periasamy, David Piston, Ted Salmon, Jan Slavik,
Deborah K. Smith, Ken Spring, Hans Tanke, D. Lansing Taylor, Roger
Tsien, Jim Turner, Xue Feng Wang, Yu-Li Wang, Pawel Wodnicki and
Barney Wray. The support of numerous funding agencies and corporations
is also appreciated, including the NIH, NSF, ACS, AHA, The North
Carolina Biotechnology Center, and the Gustavus and Louise Pfeiffer
Foundation. Dage-MTI Inc., Datacube, Inc., Hamamatsu, Inc., Olympus,
Inc. and Carl Zeiss, Inc., are also gratefully acknowledged. This book would
not be a reality without the work of an exceptionally talented graphic
artist, Tracey Curran. Lastly, I wish to dedicate this book to my wife,
Deborah K. Smith, and our beautiful daughter, Lindsey, without whose
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understanding, love and patience I would not have been able to undertake
this endeavour.
Brian Herman
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1 Fundamentals of
fluorescence

1.1 What is fluorescence?

Fluorescence is the property of some atoms and molecules to absorb light
of a particular wavelength and after a brief interval, termed the fluo-
rescence lifetime, to re-emit light at longer wavelengths. Fluorescence
requires an outside source of energy, is the result of the absorption of
light, and involves the emission of electromagnetic radiation (light). This
process is different from chemiluminescence, where the excited state is
created via a chemical reaction.

1.2 Wavelength, excitation and emission
spectra

Light can be described as having characteristics of both particle and
wave phenomena (Figure 1.1).

As a wave, light has two components, electric (E) and magnetic (H),
which travel in space perpendicular to one another. The distance
between consecutive wavecrests is defined as the wavelength (A). Light
normally consists of a mixture of electromagnetic waves of many wave-
lengths. Planck’s law states that E = hv, where E is the energy in ergs,
h is Planck’s constant (6.6 X 107%7) and v is the frequency of light (sec™;
i.e. the number of waves passing a point in 1 sec). As a reference, the
energy of 1 mole of photons (6.02 X 10%*)) at 500 nm is ~ 60 kcal mol™.
Shorter wavelengths (i.e. shorter distances between consecutive wave-
crests) have higher amounts of energy versus longer wavelengths.

The absorption of a photon of energy by a fluorescent molecule is an
all or none phenomenon and each fluorescent molecule can only absorb
incident light of certain specific wavelengths known as absorption

1



2 Fluorescence Microscopy
Y

) S S

-7
-
- /

[ *"m
L i/
- :’/ o, ’ H~ e
A / ‘///

Figure 1.1. An electromagnetlc light wave with electric field vector E in the yz plane and
magnetic field vector H in the xz plane. The distance between consecutive wavecrests is
defined as the wavelength, . Reproduced by permission of Marcel Dekker, New York,
from Pesce, AJ., Rosen, C.-G. and Pashby, T. (1971) Fluorescence Spectroscopy: An
Introduction for Biology and Medicine, p. 3.
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bands. Emission of fluorescence also occurs at certain specific wave-
lengths, but these wavelengths are at lower energies (i.e. longer A val-
ues) than absorption band maxima due to loss of energy by the molecule
during interactions with its environment before it emits its fluorescence
(internal conversion).

Absorption of energy by fluorescent molecules occurs between a num-
ber of closely spaced vibrational and rotational excited states in differ-
ent orbitals. The Jablonski diagram (named after A. Jablonski and
described in 1953) demonstrates the different energy levels involved in
the absorption and emission of light (Figure 1.2). Physically, absorption
of light occurs very quickly (approx. 107'° sec) and corresponds to the
excitation of the fluorophore from the ground state to an excited state.
Relaxation to the lowest excited singlet state, known as internal conver-
sion, occurs within approximately 107! sec as energy is thermally trans-
ferred to the environment. Internal conversion (loss of energy in the
absence of emission of light) is due to collision of the excited state probe
with solvent molecules. The molecule ‘lives’ in the lowest excited singlet
state for periods of the order of nanoseconds (approx. 10 sec).
Relaxation from this state (the lowest excited singlet, Si; see Figure 1.2)
to the ground state with emission of a photon is, physically, what is
referred to as fluorescence. Each fluorescent molecule (fluorophore) can
repeat the excitation/emission process many times, for example for fluo-
rescein isothiocyanate (FITC) approximately 30 000 times, before excit-
ed state processes bleach the FITC molecule. In addition to fluorescence,
molecules which reside in the lowest excited singlet state can undergo
intersystem crossing to the triplet state from which a longed lived emis-
sion, phosphorescence, occurs. Fortunately, this is a relatively rare
event. Delayed fluorescence can also occur due to transitions from T
back to S: and then to Go.

The probability of movement of an electron from the ground state (Go)
to the excited state (Si) depends on the degree of similarity of the vibra-
tional and rotational energy states where the electron resides in the
ground state versus where it would reside in the excited state (Figure
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Figure 1.3. Energy diagram. Shaded areas represent the probability of the electron
position in the ground (vg) and excited (v1) vibrational energy states. Transitions from the
ground to the excited state occur in such a short time (107" sec) that the molecule can-
not move (Frank Condon principle). Therefore, the only transitions from the ground state
to the excited state which can occur are those where the probability of the electron posi-
tion in the ground and excited states maximally overlap. Reproduced by permission of
Marcel Dekker, New York, from Pesce, A.J., Rosen, C.-J. and Pashby, T. (1971)
Fluorescence Spectroscopy: An Introduction for Biology and Medicine, p. 42.

1.3). The most favoured electron transitions will be those where the
probability of the position of the electron in the ground and excited
states (rotational and vibrational) maximally overlap. This position of
maximal overlap can be thought of as indicating the excitation energy
level that is most likely to be absorbed. The most likely state for an elec-
tron at room temperature is the ground state (Go or Sp). Within the
ground state there exist a number of distinct vibrational energy states
(vo = 0, 1, 2), and thus the amount of energy of absorption for each of
these vibrational levels in the ground state will differ. This gives rise to
the absorption spectrum containing multiple peaks (Figure 1.4). If we
scan through the absorption spectrum while looking at the emission at
one wavelength, we generate the excitation spectrum (Figure 1.5). Like
the absorption spectrum, the excitation spectrum is broadened. If we
hold the excitation constant and scan through the emission wave-
lengths, we generate the emission spectrum (Figure 1.5).

Following the absorption of energy and movement of the electron to
the excited state, internal conversion causes the excited state electron to
lose energy, such that the electron comes to rest in the lowest vibrational
energy level of the excited singlet state (v1 = 0; Figure 1.3). The energy



