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Preface

On the occasion that the Officers’ Meeting and the Board Meeting of
ICIAM (International Council for Industrial and Applied Mathematics)
was held in Shanghai from May 26 to May 27, 2006, many famous in-
dustrial and applied mathematicians gathered in Shanghai from different
countries. The Shanghai Forum on Industrial and Applied Mathemat-
ics was organized from May 25 to May 26, 2006 at Shanghai Science
Hall for the purpose of inviting some of them to present their recent
results and discuss recent trends in industrial and applied mathematics.
Sixteen invited lectures have been given for this activity. This volume
collects the material covered by most of these lectures. It will be very
useful for graduate students and researchers in industrial and applied
mathematics.

The editors would like take this opportunity to express their sincere
thanks to all the authors in this volume for their kind contribution. We
are very grateful to the Shanghai Association for Science and Technol-
ogy (SAST), Fudan University, the National Natural Science Founda-
tion of China (NSFC), The China Society for Industrial and Applied
Mathematics (CSIAM), the Shanghai Society for Industrial and Applied
Mathmatics (SSIAM), the Institut Sino-Frangais de Mathématiques Ap-
pliquées (ISFMA) and the International Council for Industrial and Ap-
plied Mathematics (ICIAM) for their help and support. Our special
thanks are also due to Mrs. Zhou Chunlian for her efficient assistance in
editing this book.

Rolf Jeltsch, Ta-Tsien Li, Ian H. Sloan
April 2007
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Abstract

In this paper, using the Brouwer topological degree, we prove
an existence result for finite variational inequalities. This ap-
proach is also applied to obtain the existence of periodic solutions
for a class of evolution variational inequalities.
2000 Mathematics Subject Classification 49J40, 49J20, 35K85
Key words and phrases Variational inequalities, differen-
tial inclusions, topological degree, guiding functions, periodic so-
lutions

1 Introduction

It has been well recognised that variational inequalities offer the right
framework to consider numerous applied problems in various areas such
as economics and engineering. Throughout the paper we consider R™
equipped with the usual Euclidean scalar product (-,-). We start by
considering a variational inequality VI(A, ¢) that is the problem of find-
ing T € R™ such that:

(A(Z),v —Z) + p(v) —p(T) >0, VveR™
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In this formulation, A : R® — R™ is a continuous map, ¢ : R®" > Ris a
convex function. When the operator A under consideration is supposed
to be coercive, existence results for the problem VI(A, ¢) are well known
in the setting of reflexive Banach spaces. This study was initiated by
G. Stampacchia in the 60’s and we refer to the contributions of J.L.
Lions [15], Brézis [4] and Kinderlehrer & Stampacchia [12] for various
results and references therein.

In the first part of this paper we develop an original approach es-
sentially based on the use of the Brouwer topological degree to prove
some results related to the existence of a solution to problem VI(A, ¢).

Then, we study a first order evolution variational inequality, that

is a differential inclusion of the form: find a T-periodic function u €
C°([0, T); R™) such that:

%’tf(t) + F(u(t)) — f(t) € ~0p(u(t)), ae. t € [0,T],

where F' : R® — R" is a continuous map, ¢ : R®* - R is a con-
vex function, f € C°([0,+o0); R™) is such that: % € L .(0,+00; R™),
T > 0 is a prescribed period and ¢ is the convex subdifferential oper-
ator. This problem is studied by means of a continuation method. It
is well known that the Brouwer topological degree plays a fundamental
role in the theory of ordinary differential equations (ODE). M.A. Kras-
nosel’skii [13], [14] and H. Amann [3], developed a continuation method
to compute this Brouwer topolgical degree associated to some gradient
mapping (called the method of guiding function). This approach was
useful for the study of the existence of periodic solutions for ODE’s.
Roughly speaking, if on some balls of R™ the Brouwer topological de-
gree of the Poincaré translation operator (see e.g. [17]) associated to the
ODE is different from zero, the problem has at least one periodic solu-
tion (for more details, references and possible extensions to the Leray-
Schauder degree, we refer to the monograph of J. Mawhin [17]). With
the emergence of many engineering disciplines and due to the lack of
smoothness in many applications, it is not surprising that these classical
mathematical tools require natural extension (for both analytical and
numerical methods) to the class of unilateral dynamical systems. It is
well known that the mathematical formulation of unilateral dynamical
systems involves inequality constraints and hence contains natural non-
smoothness. In mechanical systems, this non-smoothness could have its
origin in the environment of the system studied (e.g. case of contact)
in the dry friction, or in the discontinuous control term. Recently, new
analytical tools have been developed for the study of unilateral evolution
problems (see e.g. [1], [2], [7], [8], [9] and references cited therein). The
study of periodic solutions for evolution variational inequalities is also
important. The Krasnol’skii’s original approach for ODE, has known
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some extensions in order to obtain continuation methods for differential
inclusions (see the article of L. Gérniewicz [10] for more details and ref-
erences). In the fourth section, we will be concerned with the existence
of a T-periodic solution u € C%([0, T); R™) such that:

% € L>(0,T;R™);
u is right-differentiable on [0, T');

u(0) = u(T)
(GO + F(ut)) — f(t),v = u(t)) + ¢(v) — p(u(t)) 2 0,
Vv € R™, a.e.t € [0,T]. (1)

Here F' : R™ — R™ is a continuous map, ¢ : R® — R is a convex function,
f € C%([0, +oo[; R™) is such that: % € Li,.(0,+00;R™) and T' > 0 is a
prescribed period.

We prove (Corollary 5.1) that if F' and ¢ satisfy some growth condi-
tion (see (36)), then problem (1) has at least one periodic solution. This
approach is also applied to obtain the existence of a T-periodic solution
of a second order dynamical system of the form:

1
loc

Mi(t) + Cq(t) + Kq(t) — F(t) € —H10%(H{ §(t)), 2)

where ¢ € R™ is the vector of generalized coordinate, ® : R - R
is a convex function, M € R™*™ is a symmetric and positive definite
matrix, C € R™*™ and K € R™*™ are given matrices and H; € Rmx!
is a given matrix whose coefficients are determined by the directions of
friction forces. The function F' € C°([0,+00); R™) is such that 4f €
LL ([0, +00); R™). The term H;8®(H{-) is used to model the convex
unilateral contact induced by friction forces. The paper is organized
as follows: Section 2 contains some background materials on properties
of the Brouwer topological degree and the concept of resolvent operator
associated to a subdifferential operator. In Section 3, using an equivalent
fixed point formulation as well as the Brouwer topological degree, we give
some existence results for finite variational inequalities. In Section 4, we
introduce the Poincaré operator associated to problem (1). Section 5 is
devoted to the existence of a periodic solution of problem (1). In Section
6, we show that our approach could be applied to a special second order
problem (2).

2 Brouwer topological degree and the resolvent op-
erator P

It is well known that the degree theory is one of the most powerful tool
in nonlinear analysis for the study of zeros of a continuous operator.
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Let QO C R™ be an open and bounded subset with boundary € and
f € C1(;R™) N C°(Q,R™). The Jacobian matrix of f at z € Q is
defined by f'(z) = (0, fj(%))1<i,j<n and the Jacobian determinant of f
at z € (1 is defined by

Jy(x) = det(f'(z)).

We set
Ay Q) ={z e Q : Jp(z) =0}.

Observing that if f=1(0) N Af(2) = 0 and 0 & f(6Q), then the set
f71(0) is finite. The quantity Y . £-1(0) sign (J () is therefore defined
and is called the Brouwer topological degree of f with respect to 2 and
0 and is denoted by deg(f,2,0). More generally, if f € C°(Q;R™) and
0 & f(09), then the Brouwer topological degree of f with respect to
and 0, denoted by deg(f, Q,0), is well defined (see [16] for more details).

In the sequel, the scalar product on R™ is denoted as usual by (-, -) and
||-|| the associated norm. For r > 0, we set B, := {z € R™ : ||z|| < r}, and
respectively B, = {z € R" : ||z|| < r}, for the open (respectively closed)
unit ball with radius » > 0. As usual, we use the notation 9B, to denote
the boundary B,\ B, of B,, thatis {z € R": ||z =r}. If f : B, - R"
is continuous and 0 ¢ f(0B,), then the Brouwer topological degree of f
with respect to B, and 0 is well-defined (see e.g. [16]) and denoted by
deg(f,B,,0). Let us now recall some properties of the topological degree
that we will use later.

Pl1. If 0 ¢ f(0B,) and deg(f,B,,0) # 0, then there exist z € B,
such that f(z) = 0.

P2. Let ¢ : [0,1] x B, — R";()\,z) — ¢(\, ), be continuous such
that, for each A € [0,1], one has 0 ¢ ¢(A,dB,), then the map A —
deg(p(),.), B,,0) is constant on [0, 1].

P3. Let us denote by idgr~ the identity mapping on R™. We have

deg(idg~,B,,0) = 1.

P4. If 0 ¢ f(0B,) and a > 0, then
deg(afa B, 0) = deg(f1 B, 0)

and
deg(—af,B,, 0) = (_l)ndEg(fy B,,0).

P5. If 0 ¢ f(0B,) and f is odd on B, (i.e., f(—z) = —f(z), Vz€
B,), then deg(f,B,,0) is odd.
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P6. Let f(x) = Az — b, with A € R"*" a nonsingular matrix and
b € R™. Then deg(f, A~*b+ B,,0) = sign(det A) = £1.

Let V € C*(R™; R) and suppose that there exists 7o > 0 such that for
every 7 > 19, 0 ¢ VV(8B,). Then deg(VV, By, 0) is constant for r > g
and one defines the index of V at infinity “ind(V, c0)” by

ind(V, 00) := deg(VV,B,,0), Vr >ro.

Let ¢ : R® — R be a convex mapping. It is well known that a) @ is
continuous on R™; b) For all z € R", the convex subdifferential of o at
z is a nonempty compact and convex subset of R™ and defined by:

dp(z) = {w ER™ : p(v) — (@) > (w,v —u), Vv ER"}

¢) For all z € R", the directional derivative of  at z € R™ in the
direction £ € R", i.e.,

: +af) — o(z)
¢'(z;€) = lim "
exists (see e.g. [11] page 164). Since the subdifferential operator Oy
associated to ¢, is maximal monotone (Brezis [5]), the operator I+
A0yp)~! denoted by Py, is a contraction eveywhere defined on R", that
is,

[P (@) — Pro@Il < llz—yll, Ve, y € R™
This operator P, is called the resolvent of order A >0 associated to
d¢p and for simplicity, we note P, instead of P;, when the parameter
A = 1. Let A : R® — R™ be a continuous mapping and consider the
inequality problem: Find Z € R™ such that

(A(Z),v — ) + (v) — p() 20, VveR" ®3)

Clearly problem (3) is equivalent to the nonlinear equation: Find z € R"
such that
z— P,(z — A(Z)) =0. 4)

In view of property P1 recalled earlier, it is important to compute the
degree of the operator idrn — P, o (idrn — A).

Remark 2.1. If 7 is a solution of problem (3), then
(A(Z),8) +¢'(%:€) 20, VEER™

Indeed, let Z be a solution of (3). Let £ € R™ and o > 0 be given.
Setting v = Z + o in (3), we get

(A(Z), a€) + ¢(Z + af) — ¢(z) 2 0.
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Thus, for all o > 0, we have
(A(z),€) +

Taking the limit as & | 0 we obtain

(A@), ) +¢'(z;8) > 0.

¢@+aﬂ—w@)>0
a : -

Example 2.1. Let ¢ : R — R be the function defined by
o(z) = |z|, VzeR.

We have
1 if >0
Op(x) =< [—1,1] if z=0
-1 if z<0
and
.’L'—]. if z>1
Po(z) = (I +0¢p) (z) = if ze[-1,1]

:1:—}—1 if z<-1.

Bp(x) a+a@’ j
P idg - Py o (idg - A) f

Figure 1 Example 2.1

Setting A(z) = 2z, we get
z if |z|] <1

—Pyz—-Alz))={{2z-1 if z>1
22 +1 if z < —1.

We see that the operator idgr — P, o (idg — A) has a unique zero on R.
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Proposition 2.1. Let L > 0 be given and assume that the mapping
G : [0,L] x R® — R" defined by (\,y) — G(\y) is continuous on
[0,L] x R™. Then, the mapping

(A y) = Pao(G(Ay)

is continuous on [0, L] x R™.

Proof: Let {y,} C R™ and {\,} C [0, L] be given sequences converg-
ing respectively to y* € R™ and A\, — A* € Rasn — +o0o. We claim that
the sequence { Py, ,(G(An,yn))} tends to P« o(G(A*,3*)) as n — +oo.
Indeed, setting x5, := P\, o(G(Mn,yn)) and z* := P« ,(G(A\*,y*)), we
have

(Zn — G(An,Yn), v — Zn) + Anp(v) — Anp(zn) >0, Vv eR™ (5)
and
(* — G\, y%),v —z*) + Xp(v) — X*p(z*) >0, VweR" (6)

Let us first check that the sequence {z,} is bounded. Indeed, suppose
on the contrary that the sequence {||z,||} is unbounded. Setting v :=0
in (5), we obtain

_(zn - G(’\myn)v$ﬂ> + /\n[(p(O) - ‘P(xn)] Z O,
and thus

lznll? < IGAn, yn)lll1Znll + Anf(0) — ¢(za)]-
It results that for n large enough, ||z,|| # 0 and

GOyl , o

1<
(2 [EA

5[%(0) — @(zn)]- (7)

As for n large enough, Wz—ln—ll € (0,1] we use the convexity of ¢, to obtain

"’(”Z—:”) < ”m—lnnw(wn) + (1 = m)so(O)-

Thus,

2(0) — p(za) s
<20 e ():

From (7), we get

(8)

1<

IGO0, )l , , [#© —#(pzay)
e
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The sequence {”—;:ﬂ} remains in the compact set B; and from the con-
tinuity of ¢, we derive that the sequence {ga(”—;:ﬂ)} is bounded in R.
Hence,

P(fear) _

= 0
n—too |[an||

Taking now the limit as n — +o00 in (8), we obtain the contradiction
1 < 0. The sequence {z,} is thus bounded. Setting v := z* in (5) and
v := x, in (6), we obtain the relations

(Tn — G(AnyYn), Tn — %) — Anp(z*) + Anp(zn) <0 9)

and
—(z* = G\, "),z — 37) — A p(zn) + Xp(z") < 0. (10)
Thus
2 — 2*1* < IG(An, yn) = GAA", y") ||z — 27|
+(/\n - )\*)V’(x*) T ()‘* - An)(»a(xn)' (11)
Using the continuity of ¢ and the boundeness of {z,}, we get that the
sequence {¢(Zn)}n is bounded in R. Moreover ||G(An, yn)—G(X*,y*)|| —
0 and (A, — A*) — 0 in R as n — +oo. Relation (11) yields that
T, — z* in R™ as n — +oo. Hence the operator (A, y) — Px »(G(A,y))
is continuous, which completes the proof. O

Proposition 2.2. Suppose that A : R®™ — R™ is continuous and ¢ :
R™ — R is a convex function. If there exists a continuous mapping
H :R™ — R"™ and r > 0 such that

(A(z),H(z)) + ¢'(z; H(z)) <0, Vz € IB,. (12)
Then
deg(H,B,,0) = (—1)"deg(idr» — P, (idr» — A), B, 0).

Proof: Let h : [0,1] x B, — R™ (A y) — h(A,y) =y — Pre(y —
M (y) + (1 — M) H(y)). Proposition 2.1 ensures that h is continuous. Let
us now check that h(\,z) # 0, Vz € OB,. Indeed, suppose on the
contrary that there exists z € B, and A € [0,1] such that h(X,z) =0,
that is

T = Py o(z — M(z) + (1 — M) H(z)).

We first remark that A # 0. Indeed, if we suppose, on the contrary, that
A =0, then z = Py(z + H(z)) = = + H(z). This yields H(z) = 0 which
contradicts assumption (12). Thus A > 0 and

(AA(z) — (1 = NH(z),v — z) + Mp(v) — Ap(z) 20, Ve R™.
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It results that (see Remark 2.1):
(M(z) — (1= NH(2),€) + A/ (2;6) 20, VEER™
Setting £ := H(x), we obtain
M(A(z), H(z)) + ¢ (z; H(z))] > (1 = M| H(@)]* > 0,
which contradicts assumption (12). Therefore,

deg(idrn — P, (idrr — A),B,,0) = deg(h(1,.),B,,0)
= deg(h(0,.), B,,0)
= deg(idgrn — Po(idr~ + H),B,,0)
= deg(—H, B,,0)
= (—1)"deg(H,By,0),

which completes the proof. a
3 Some existence results for finite variational inequal-
ities

As a direct consequence of Proposition 2.2, we have the following exis-
tence results for finite dimensional variational inequalities.

Theorem 3.1. Suppose that 1) A : R™ — R™ is a continuous operator;
2) ¢ : R® — R is a convez function; 3) there exists r > 0 such that

(A(z),z) — ¢ (z;—z) >0, Vz € IB,.
Then there exists T € B, such that

(A(@),v — Z) +¢(v) —p(z) 20, VveR™

Proof: Just apply Proposition 2.2 with H := —idr~. Indeed, here
we have

(A(z), H(2)) + ¢'(z; H(2)) = —(A(2), 2) + ¢/ (@; ).
O

Theorem 3.2. Suppose that 1) A : R® — R™ is continuous; 2) ¢ : R —
R is convez and Lipschitz continuous with Lipschitz constant K > 0, i.e.,

| p(2) — o) I< Klz—yll, Vz,y €R"
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3) there exists r > 0 such that
|A(z)|| > K, Vz € dB,,

and
deg(A,B,,0) # 0.

Then there exists T € B, such that

(A(Z),v — Z) + p(v) —p(Z) >0, VveR".

Proof: Just apply Proposition 2.2 with H := —A. Indeed, we have

(A(z), H(2)) + ¢ (z; H(2)) = | A@)|1* + ¢ (z; —A(=))
< ~[|A@)]* + K[| A=)
= [[A@)[I (K = [|A(2)])-

Therefore,
(A(z), H(z)) + ¢'(z; H(z)) <0, Vz € B,.
Proposition 2.2 ensures that
deg(idgn— P, (idgn—A), By, 0) = (—1)"deg(H, B, 0) = deg(A,B;,0) # 0.

Hence, there exists Z € B, such that Z = P,(Z — A(Z)). The conclusion
follows. O

Theorem 3.3. Suppose that

1) A:R"™ — R™ is continuous and there exists 7 > 0 such that
(Az,z) >0, Vz € OB, and deg(idr~ + A,B,,0) # 0.
2) ¢:R™ — R is a convez function satisfying,
¢ (z;— — Az) <0, Vz € IBy;
Then there exists T € B, such that
(A(Z),v — ) + p(v) —p(Z) 20, VveR™

Proof: Just take H := —idg» — A in Proposition 2.2. Indeed, we
have
(A(z), H(z)) + ¢/ (z; H())
= —||A@@)|*> — (A(z),z) + ¢'(z; —z — A(z)) <0, Vz € IB,.
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According to Proposition 2.2, we have

deg(idgn — P, (idg» — A),B,,0) = (—1)"deg(H, B,,0)
= deg(idr~ + A, B,,0) # 0.

Hence, there exists T € B, such that Z = P,(Z — A(Z)). The conclusion
follows. O

Corollary 3.1. Let f € R™ be given. Suppose that 1) A € R™*™ is a real
nonsingular matriz; 2) ¢ : R™ — R is convez and Lipschitz continuous
with Lipschitz constant K > 0. Then there exists T € R™ such that

(AZ — f,v—Z) + p(v) —(Z) >0, VYveR"™

Proof: The result is a consequence of Theorem 3.2 with A defined
by
Alx) = Az — f, VzeR™

The matrix A is nonsingular and thus there exists ¢ > 0 such that
|Az|| > ¢||z||, Vz € R™. Let us choose

7 > max {—K +c”f“ , ||A*1f“}.

We see that if ||z| = r, then
[A@) > | Az|| - I F]l = ellll - I£]l > K.
On the other hand, we remark that
h(\,z) := Az — A\f #0, VA€ [0,1],z € FB,.

Indeed, suppose on the contrary that there exists A € [0,1] and z € dB,
such that Az = Af. Then

2]l = XA < ATl
and we obtain the contradiction r < ||A~! f||. Thus

deg(A. — f,B,,0) = deg(h(1,.),B,,0)
= deg(h(0,.), B,,0)
= deg(4.,B,,0)
= sign (det A)
#0,

which completes the proof. O
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4 The Poincaré operator

Let us first recall some general existence and uniqueness result (see e.g.

[18]).

Theorem 4.1. Let ¢ : R® — R be a convez function. Let F : R® — R™
be a continuous operator such that for some w € R, F 4wl is monotone,
ie.,

(F(.’E) - Fi(y)’:l7 - y> > —LUHQL' i y“2’ V:l), ye R™.
Suppose that f : [0,+00) — R™ satisfies

dj
£ € CO, +00)R), & € 1}, (0, +o0; kY.

Let up € R™ and 0 < T < +o00 be given. There exists a unique u €
CY([0, T); R™) such that

du ¢ (0, T;R™); (13)
u 18 right-differentiable on [0, T); (14)
u(0) = uyp; (15)
(%O + F@@) - 10,0 - u)) + () — p(u(®) 2 0,
Vv € R, a.e. t € [0,T]. (16)

Remark 4.1. Suppose that F': R® — R™ is of the type
F(z) = Az + V'(z) + Fi(z), Vz €R",

where A € R"*" is a real matrix, ¥ € C'(R™;R) is convex and F} is
Lipschitz continuous, i.e.,

[F1(z) — Fr(w)ll < kllz — yll, V=z,y €R",

for some constant k£ > 0. Then F is continuous and F + wI is monotone
provided that

w > sup (—Az,z) + k.
llz]=1

We note that if F' is k-Lipschitz, then F' + kI is monotone.

Remark 4.2. i) The variational inequality in (16) can also be written
as the differential inclusion

%(t) + F(u(t)) — f(t) € —0p(u(t)), a.e. t € [0,T], 17

ii) Let w : [0,T] — R be the unique solution of (13)-(16). Then

(G O+ Fu©) - 70),€) + ¢/ (@) 20, Ve R, ae.te[0,T]



