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Preface
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Predictive Control, or Model-Based Predictive Control (‘MPC’ or "MBPC’) as it is
sometimes known, is the only advanced control technique — that is, more advanced than
standard PID control — to have had a significant and widespread impact on industrial
process control. The main reason for this is that it is

The only generic control technology which can deal routinely with equipment and
safety constraints.

Operation at or near such constraints is necessary for the most profitable or most efficient
operation in many cases. The penetration of predictive control into industrial practice
has also been helped by the facts that

© Its underlying idea is easy to understand,
- Its basic formulation extends to multivariable plants with almost no modification,

It is more powerful than PID control, even for single loops without constraints,
without being much more difficult to tune, even on ‘difficult’ loops such as those
containing long time delays.

Predictive control was developed and used in industry for nearly 20 years before
attracting much serious attention from the academic control community. This commu-
nity tended to ignore its potential for dealing with constraints, thus missing its main
advantage. In addition, it tended to point to the fact that, when constraints are ignored,
predictive control is equivalent to conventional, though generally ‘advanced’, linear
control, and hence apparently nothing new. This is true, but again misses the important
point that issues such as tunability and understandability are crucial for the acceptance
of a control technology, at least in the process control environment. Fortunately, the
academic community has for some years now appreciated that predictive control really
does offer something new for control in the presence of constraints, and has provided
much analysis, and new ideas, to such an extent that it has gone beyond current industrial
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practice, and is preparing the ground for much wider application of predictive control
— potentially to almost all control engineering problems. The constant increase in
computing speed and power certainly makes that a real prospect.

In this book I have attempted to bring everything together. I have tried to convey
the simplicity of the underlying concepts of predictive control, but also to show how
it relates to existing control theory, and indeed how much more can be done with it
when its use is informed by a knowledge of standard control techniques, such as state
estimation, disturbance modelling, and frequency response analysis. Predictive control
involves optimization, and I have included details of how to solve at least some of the
optimization problems encountered. I have also tried to display the main directions of
current research, and give some indication of likely future directions, both of research
and of applications.

This book assumes that the reader has some previous exposure to control theory,
such as a first course and some contact with state-space models. It will be suitable
for graduate students taking systems and control courses, but I hope that it will also
prove useful to practising industrial engineers. In order to increase its usefulness to
non-students, and also to alleviate the problem of prerequisites for students, I have
included a number of Mini-Tutorials. These are one-page summaries of topics, such as
observers or Lyapunov equations, that are needed in order to understand the material
at certain points. I believe that the Mini-Tutorials contain enough explanation to allow
the reader to follow the developments in the book, but of course they are not meant to
replace in-depth study of these important topics.

It is essential to have access to suitable software in order to solve any non-trivial
predictive control problems, and to gain experience of how it actually works. This
book assumes that the reader has access to MATLAB, together with its Control
System Toolbox and Model Predictive Control Toolbox. Some simple MATLAB files
have also been written, and some files which augment those available in the Model
Predictive Control Toolbox — some of these also require the Optimization Toolbox.
All such additional software is available on this book’s Companion Web Site:

http://www.booksites.net/maciejowski/

The versions of software used for the preparation of this book were:

MATLAB Shidiel!
Control System Toolbox 4.2.1
Model Predictive Control Toolbox 1.0.4
Optimization Toolbox 2.0

My students Eric Kerrigan and Simon Redhead were responsible for most of the
modifications to Model Predictive Control Toolbox functions which are available on
the web site.

This book originated in a course of lectures given at the Faculty of Aerospace
Engineering in Delft, during November and December 1997. I would like to thank Bob
Mulder, Hans van der Vaart and Samir Bennani for inviting me to spend a sabbatical term
at Delft, for making all the arrangements, for making my stay at Delft both pleasant and
interesting, and above all for having enough vision to believe that a course on predictive
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control was not out of place in an aerospace department. I would also like to thank Ton
van den Boom for giving me feedback on the first few chapters, Rob de Vries (both of TU
Delft) for some valuable help with Chapter 4, and Hans van der Vaart for providing me
with the linearized model of the Citation aircraft which is used in a number of illustrative
examples in the book. The use of an aircraft example may seem quirky, since predictive
control has been used almost exclusively in the process industries. There are two reasons
for this. Firstly, it reflects my conviction that predictive control has great potential in
all application sectors, as a result of continuing increases in real-time computational
possibilities. Secondly, most process control examples require considerable explanation
of the context to those who are not chemical engineers, whereas most readers will be
able to understand the (very simplified) aircraft example from their own experience. Of
course there are also examples based on process control in the book, and the major case
studies in Chapter 9 are both taken from process control.

I gave a graduate course based on the material in this book to the Centre for Process
Control Design at Lund University, and received several very valuable suggestions from
both faculty and students who attended that course. Andrew Ogden-Swift of Honeywell
Hi-Spec Solutions, Sean Goodhart of Aspentech, David Sandoz of SimSci—Predictive
Control, and Jacques Richalet of Adersa have all been very generous of their time,
have provided me with details of their companies’ products, and have discussed the
practicalities of predictive control most valuably and stimulatingly. David Sandoz and
David Clarke both provided extremely useful, but also encouraging, feedback at various
stages of the development of the manuscript, and Fred Loquasto of UC Santa Barbara
read the almost-final version in record time, and picked up several errors and infelicities.

Any errors remain my own responsibility, of course.

J.M. Maciejowski
14 October 2000

A Companion Web Site accompanies Predictive Control by Jan Maciejowski.

Visit the Predictive Control Companion Web Site at
www.booksites.net/maciejowski
Here you will find valuable teaching and learning material including:

For Students and Lecturers:
MATLAB files allowing you to model and simulate many of the systems
presented in the book
» Links to software needed to run the simulations (commercial Matlab-based

software from The Mathworks, and free extensions and other software from
the author)

» Links to websites related to predictive control

For Lecturers:
» Downloadable solution’s manual
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