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Preface

It has long been recognized in the field of image processing that the design of
processing operations should be based on a model for the ensemble of images to be
processed. This realization is becoming increasingly prevalent in the field of
image analysis as well. Unfortunately, it is difficult to formulate realistic models
for real-world classes of images; but progress is being made on a number of
fronts, including models based on Markov processes, random fields, random mo-
saies, and stochastic grammars, among others. At the same time, analogous
models are being developed in fields outside image processing, including stere-
ology, mathematical morphology, integral geometry, statistical ecology, and the-
oretical geography. It is hoped that this volume, by focusing attention on the field
of image modeling, will serve to stimulate further work on the subject, and will
promote communication between researchers in image processing and analysis
and those in other disciplines.

The papers in this volume were presented at a workshop on image modeling in
Rosemont, Illinois on August 6-7, 1979. The workshop was sponsored by the Na-
tional Science Foundation under Grant MCS-79-04414, and by the Office of Naval
Research under Contract N00014-79-M-0070; their support is gratefully acknowl-
edged. Three of the papers presented at the workshop are not included in this vol-
ume: B. Julesz, Differences between attentive (figure) and preattentive (ground)
perception; W. K. Pratt and O. D. Faugeras, A Stochastic texture field model;
W. R. Tobler, Generalization of image processing and modeling concepts to poly-
gonal geographical data sets. All but the first of the papers in this book appeared in
Volume 12 of the journal Computer Graphics and Image Processing.
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IMAGE MODELING

Mosaic Models for Textures

NARENDRA AHUJA

Coordinated Science Laboratory and Department of Electrical Engineering,
University of Illinois, Urbana, Illinois 61801

Traditionally the models of image texture have been classified as statistical or structural
[15, 29, 30]. However, in [6, 9] we have suggested a classification of image models into pizel-
based and region-based models, which we believe is more useful. The pixel-based models
view individual pixels as the primitives of the texture. Specification of the characteristics
of the spatial distribution of pixel properties constitutes the texture deseription [15, 28].
The region-based models conceive of a texture as an arrangement of a set of spatial sub-
patterns according to certain placement rules [30, 34]. Both the subpatterns and their
placement may be characterized statistically.

Most of the models used in the past are pixel-based. These models have been proposed
for images representing a variety of natural phenomena, including ocean waves and the
earth’s surface. However, for many images the region-based models appear to be more
natural [1, 5, 37] than the pixel-based models, although relatively little research has been
done on their development [9, 14]. In this paper we shall discuss a specific class of region-
based models known as mosaic models, and shall review the work done on these models
and their application to modeling textures.

1. MOSAIC MODELS

Mosaic models are defined in terms of planar random pattern generation pro-
cesses. The characteristics of the patterns generated by a given process may be
obtained from the definition of the process. These properties then determine the
class of images for which the corresponding model is suitable. A variety of pro-
cesses may be used to define mosaic models. We describe below briefly two
classes of such processes that we have considered in our work. For details see

[1-4, 8].

1.1. Cell Structure Models

Cell structure mosaics are constructed in two steps:

(a) Tessellate a planar region into cells. We shall consider only tessellations
composed of bounded convex polygons.

(b) Independently assign one of m colors ¢, ¢z, . . . , cp to each cell according
to a fixed set of probabilities

P, - - - Pm 2Pi=1-

i=1

Copyright © 1981 by Academic Press, Inc.
1 All rights of reproduction in any form reserved.
ISBN 0-12-597320-9



2 NARENDRA AHUJA

Let P;y(d) denote the probability that one end of a randomly dropped needle of
length d falls on color ¢; given that the other end is in a region of color ¢;. Let
W(d) be the probability that a randomly dropped needle of length d falls com-
pletely within a cell. Then it can be shown that

Pyy(d) = p(1 — W(@)) + 8,;W(d),

- where 8 is the Kronecker function.

Given the coloring process in step (b), the cell structure models form a family
whose members differ in the manner in which the plane is tessellated. We shall
now describe some members of this family that we have used, starting from the
three regular tessellations and progressing toward some random ones.

L.1.1. Square model. This is an example of a cell structure model where the
cells are of a uniform size. A square (checkerboard) model can be formed by the
following procedure. First, choose the origin of an x —y coordinate system on the
plane with uniform probability density. Then tessellate the plane into square cells
of side length b. Next, this “checkerboard” is rotated by an angle chosen with
uniform probability from the interval (0, 2#). The cells are now independently
assigned one of the m tile types.

Modestino et al. [24, 26] have considered tessellations of the plane into rec-
tangles and parallelograms. The lengths of the sides of the rectangles or the
parallelograms are determined by two independent renewal processes defined
along a pair of axes.

1.1.2. Hexagonal model. This model uses a network of identical hexagons to
tessellate the plane. The hexagons can be oriented at any angle to the axes.

1.1.3. Triangular model. This is similar to (1) and (2) except that a triangular
tessellation of the plane is used.

All three regular tessellations described above can be viewed as the result of a
growth process from a set of nuclei placed at the points of an appropriate regular
lattice. Assume all the nuclei start growing simultanzously along a circular
frontier, at any given instant. At some later time the circles centered at neigh-
boring lattice points come into contact. As the cells continue to grow, these points
of contact become the midpoints of growing straight line segments along which
the growth frontiers meet and the growth is stopped. Finally, the grown line seg-
ments form the sides of polygons that have the original nuclei as their centers.
Expressions for W(d) for these tessellations are known [1, 8, 17, 31, 32].

An interesting special case arises when we consider cells of unit area. Then the
resulting mosaic is the realization of a random lattice point process defined by the
coloring process. We shall now describe some random cell structure models.

1.1.4. Poisson line model. Consider a system of intersecting lines in the plane
with random positions and orientations. Such a system when derived by the fol-
lowing Poisson process possesses fundamental properties of homogeneity and
isotropy. A Poisson process of intensity =/m determines points (6, p) in the in-
finite rectangular strip [0 = § <7, —» < p < »]. Each of these points can be used
to construct a line in the plane of the form x cos § + y sin § — p = 0, where p is the
distance between the line and an arbitrarily chosen origin. This process is used
to tessellate the plane into convex cells.
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[1, 82] list some important characteristics-of the Poisson line tessellation, such
as the expected cell area, expected cell perimeter, expected number of cells meet-
ing at a vertex, and expected total line length per unit area. A detailed discussion
can be found in [19, 20, 36].

1.1.5. Voronot model. This model is based upon a tessellation that is the result
of a growth process similar to that used for the regular cell structure mode}ls
described earlier except that the growth now starts at randomly located points.
Each of thdse points spreads out to occupy a “Dirichlet cell” [13, 21, 22] con-
sisting of all the poir‘s that are nearer to it than to any other nucleus. The random
initial arrangement cf the nuclei may result in cell edges with any of infinitely
many slopes, and therefore, a random tessellation. The cells are then indepen-
dently colored as usual to obtain a Voronot mosaic. [1, 32] present some proper-
ties of the Voronoi tessellation. For details, see [13, 21, 22].

1.1.6. Delaunay model. The Delaunay tessellation is closely related to the
Voronoi tessellation. Delaunay triangles [21-23] can be constructed in the
Voronoi tessellation by joining all pairs of nuclei whose corresponding Voronoi
polygons share an edge. Thus the vertices of Voronoi polygons are the circum-
centers of the Delaunay triangles. The properties of Delaunay tessellations are
discussed in [21-23].

1 2. Coverage Models

Coverage or “bombing” models constitute the second class of mosaic models
that we have considered. A coverage mosaic is obtained by a random arrange-
ment of a set of geometric figures (“bombs”) in the plane.

We shall first define the class of binary ¢overage models. Consider a geometric
figure in the plane and identify it by (i) the location of some distinguished point
in the figure, e.g., its center of gravity, hereafter called the center of the figure,
and (ii) the orientation of some distinguished line in the figure, e.g., its principle
axis of inertia. Let a point process drop points on the plane, and let each point
represent the center of a figure. If the points are replaced by their corresponding
figures, the plane is partitioned into foreground (covered by the figures) and back-
ground.

A multicolored coverage mosaic is obtained by considering figures of more than
one color. The color of a given figure is randomly chosen from a known vector of
colors ¢ = (¢y, Cz, . . . , Cm) according to a predetermined probability vector
p=(py, P, - - . , Pm). Let ¢, denote the background color. Since, in general,
the figures overlap, we must have a rule to determine the colors of the regions
that are covered by figures of more than one color. We shall give one example of
such a rule. Let us view the point process as dropping the centers sequentially
in time. Each time a new point falls, the area covered by the associated figure is
colored with the color of that figure irrespective of whether any part of the area
has already been included in any of the previously fallen figures. The color of a
region in the final pattern is thus determined by the color of the latest figure that
covered it. (Note that we could just as well have allowed a figure to cover only an
area not included in any of the previous figures.)

As in the case of the cell structure models, P,;(d) denotes the probability that
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one of the ends of a randomly dropped needle of length d falls in a region of
color ¢; given that the other end is in a region of color c;, 0 < 1, j < m, where ¢,
denotes the color of the background, the region not occupied by any of the figures.
Some general properties of coverage models are discussed in [1, 12, 35].

2. PROPERTIES OF MOSAIC MODELS

A major part of our past effort has been devoted to relating properties of the
patterns generated by mosaic models to the parameters occurring in their defi-
nitions. These results have then been used to fit the models described in Sections
1.1 and 1.2 to real textures. We now summarize the past work.

2.1. Geometric Properties of Components in Cell Structure Mosaics

Ahuja [1, 2] presents a detailed analysis of the geometric properties of com-
ponents in the cell structure mosaics. To avoid the numerous details, we shall
present here only a qualitative description of the basic approaches involved. A
concise but more illustrative discussion appears in [5]. Some experimental results
are presented in [7, 10].

To estimate the expected component area in a regular cell structure mosaic,
let us first consider the colored regular lattice defined by cell centers, each having
the same color as its cell. The expected number of points in a component of this
lattice is obtained by viewing the component as a stack of overlapping identically
colored runs in succeeding rows, formed as a result of a one-dimensional row-
incremental Markov growth process. The statistics of the within-row components,
or runs, are easy to obtain. The expected number of cells in a component of a
regular mosaic is the same as the expected number of points in a component of
the regular lattice. The expected area of the mosaic component is then obtained
by using the known cell area. For the random models, the cell centers do not
form a regular lattice. However, the expected number of neighbors of a cell and
the expected number of cells meeting at a vertex are fixed for a given tessella-
tion. A conjecture is presented that suggests that the expected area of a com-
ponent in a random mosaic can be approximated by the expected area of a compo-
nent in a regular mosaic that has the same cell area and number of cell neighbors
as the corresponding expected values in the random mosaic.

The expected perimeter of a component is estimated in terms of the expected
number of sides of a cell in the component that belong to the component border.
Expected component perimeter follows from the known expected perimeter of a
cell, the expected number of sides of a cell, and the expected number of cells in a
component obtained as described above.

The problem of estimating the expected width of a component, i.e., the ex-
pected length of intercept on an arbitrary component due to a randomly located
and oriented line transect, is also considered in [1, 2]. The probability that the
number of cells along the intercept is n can be determined easily. Given the
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orientation of the transect, the total length of the intercept in a regular tessella-
tion can then be expressed in terms of the cell size. For the random tessellations,
the orientation of the transect need not be known, since the intercept length is
independent of the direction in which it is n.easured. The expected intercept
length can be found by considering different values of n.

2.2. Geometric Properties of Components in Coverage Mosaics

Estimation of the expected area, expected perimeter, and expected width of a
component in a coverage mosaic is discussed in detail in [1, 3]. Here we shall
briefly outline the approaches used without giving any mathematical details.

The computation of the expected component area is very similar to that for the
cell structure models. A component is viewed as resulting from stacking of over-
lapping runs of figure centers. A run of centers is defined as the sequence of
those successive centers within a row whose corresponding figures overlap. A
run in a given row may overlap with a run in a distant row if the figures are
sufficiently large. The expected total number of components in a given image
is derived from a Markov formulation of the component growth process. The
expected total area covered by the figures is easy to obtain in terms of the prob-
ability that an arbitrary point is isolated. These two results together provide
the expected component area.

The estimation of the expected perimeter makes use of the estimate of the
expected total length of that part of the border of a figure that is not covered
by any other figure. This latter estimate can be made in terms of the expected
number of uncovered segments along the border of a figure and the expected
length of one such segment. Exact formulas are obtained for the Euclidean plane
mosaics, but results for the grid case are approximate. In multicolored coverage
patterns the perimeter is computed from borders between different colors and
the background and between different colors. It is easy to seethat the former is
the same as in binary coverage patterns, where all bombs have the same color.
Different colors share this border with the background according to their sta-
tionary probabilities. Similarly, the expected length of the border between a
given color and other colors is the difference of its expected lengths of border
with the background when the figures with the other colors are not dropped and
when they are dropped. Different colors share this border according to their
stationary probabilities.

Computation of expected width of a component is relatively more complex for
coverage models. The intercept of a component along a transect consists of
smaller intercepts due to many overlapping figures. The distribution of the length
of each of these smaller intercepts can be obtained. The component intercept can
then be interpreted as formed by a renewal process where the ends of the smaller
intercepts define the renewal “times”. The expected length of the intercept is
given by the renewal equation. This approach, however, requires that the figures
used be convex.
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2.3. Spatial Correlation in Mosaics

We shall now review tiiose properties of the patterns generated by mosaic
models that involve relationships between the gray levels (or colors, etc.) at a pair
of points at a given distance and orientation. Once again, we keep the description
nonmathematical for brevity. For details, see [1, 4] and the other references
cited L elow.

The joint probability density function for a pzir of points in a cell structure
mosaic can be expressed in terms of the probability that the two points belong
to the same cell. For points chosen at a random orientation, this latter probability
is only a function of the distance d between them, and was denoted W(d) earlier.
For the regular cell structure models and the Poisson line model, the analytic
expressions for W(d) are known. Fr.: the occupancy model, it has been shown [17]
to involve the solution of a complicated double integral. Ahuja [1, 4] has em-
pirically estimated W(d) for the occupancy and the Delaunay models. Since then,
Moore [27] also has conducted experiments with the occupancy model, and has
estimated W(d) for that model. For the coverage models, computation of the joint
probability density involves point containment properties of certain regions de-
termined by the figures involved and the separation and orientation of the points.
For the multicolored coverage models, one has to consider further the cases in
which these regions may have different colors.

The joint probability density function can be used to derive many joint pixel
properties. The autocorrelation function is a commonly used second-order statis-
tic. For cell structure models. it is the same as the function W(d), and therefore
is known for all of the models we have considered. Modestino et al. [24] present
an integral for the autocorrelation function for their generalized checkerboard
model where the cell sides have exponentially distributed lengths. They also pre-
sent the corresponding expression for the power spectral density. The second-
order properties of the parallelogram tessellacion model are given in [25]. We may
note here that Modestino et al. assign normally distributed gray levels to the cells
such that the gray levels of adjacent cells are correlated. This is in contrast to
the process described in Section 1.1, in which the gray levels of the cells are in-
dependent. Fo- the coverage models, the autocorrelation function is obtained
by a straightforward application of its definition in conjunction with the known
joint probability density function.

The variogram [16, 18], the expected squared difference between the colors of a
randomly chosen pair of points, is another useful second-order property, similar
to the autocorrelation function. The joint probability density functions for point
pairs are used to obtain the variograms for the individual models.

The gradient density is a useful measure of the spatial variation of color in
‘Euclidean plane patterns. For grid patterns generated by mosaic models, Ahuja
[1, 4] relates the digital edge density (analogous to the gradient density) to the

_perimeter results for the Euclidean plane patterns. The orientation distribution

-of the edges is known from the underlying tessellation (cell structure models) or
the shapes of the figures (coverage models). Approximate responses of several
digital edge operators, such as horizontal, vertical, and Roberts, when applied to
mosaics, are given.
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2.4. Fitting Mosaic Models to Textures

In [33] some preliminary experiments on fitting mosaic models to real textures
are described. Predicted variograms were computed for two models, checker-
board and Poisson line, and were fitted to the actual variograms of ten texture
samples from Brodatz’s album [11]. These textures were also thresholded, and
the average component width was computed. This width agreed very closely
with the width predicted by the better fitting model in each case.

Some further experiments on mosaic model fitting are reported in [7, 10]. Sam-
ples of four Brodatz textures (wool, raffia, sand, and grass) [11] and three terrain
textures were segmented, and average component area and perimeter were com-
puted. Values predicted by six cell structure models (checkerboard, hexagonal,
triangular, Poisson line, occupancy, and Delaunay) were also computed. (Predic-
tions were also made for the square bombing model, but they were very poor in
all cases.) For each texture, the model parameters were adjusted to make the
area predictions match the observed values, and the resulting errors in predicted
perimeter were tabulated; and vice versa. The minimum area error and minimum
perimeter error models for each texture were the same in nearly all cases, and
were consistent from sample to sample for nearly all the textures.
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