= . PEARSON

S RIENH
CiEE A

(RIhR - SB2hR)

I

fok
t

&

Data Structures
and
coirion | Algorithm Analysis in C

Mark Allen Weiss

X prermrxz ©

L T Wb i R A

hina Machine Press

HIBGEM SEESHT CESHE R - =25

Data Structures and Algorithm Analysis in C (Second Edition)

AR BT H20H LRI ENZFEZ —, EEEREREMNEEZSFTAEESR
2R, HMBREAMEESTNEELRGHE, HZEZHT, CHHERS00RMAFE
e

HEXRBR, EEBHRFEN T N EEMBEERTEMHLES %, BICREFAE
0, FEERTHKYBBEXRBOES, HFEENNE, HEMESTHEZRTT M.

FHEE

s RER THZRITRI, 8BAREE., SAEZE. TN, BILEEUREH
"k

s RENAT UAIRTHRBMIMAOMITEN, WLRAPRHE, MM, ZIWMAT, BEEKR
FfRER

o FEITRTRIESN, TEBPNEN—LEBRBIES.

o MMTHABEEMREELANAE, SFLRM. BMEATHRM, treapht, k-dif,
BoxHESE

* BATHHAF FHRRASTH—LEHRER

Mark Allen Weiss 1987 FEEHETAFREITEVRFEE L2460, IF
MRobert Sedgewick, MEEEHT BXERAFITESERNEERZIR.
@i8{E £ EAP(Advanced Placement) ZiR it EHFRNEZERSTHE, HEFEHAR
FERBEEN, EENHEE,

3. & #
PEARSON 5 *
®
www.pearsonhighered.com % L

f"v’v\d
For sale and distribution in the People's Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macau SAR).

RRFREARKMERA (FEFEFEETE, RIVFIITHR
MPEABHK) HERTT.
LRSS, M/ SR

ISBN 978-7-111-31280-2
EfRHL. (010) 88378991, 88361066
MPHLE. (010) 68326294, 88379649, 68995259
312802

$eFEHLE. (010) 88379604
&S5, hzjsj@hzbook.com

M I #35: www.china-pub.com) 87111
BEERT - 4n T A TEHr: 45.005¢

L = m ﬁﬁﬁnm:-ag‘ ﬁﬁ C _Em.mﬂ Mark Allen Weiss 30 e
_ _W wﬂﬂ M _ x f. WnA unm m__w_:m-.:@mﬁulj ne Press
L= <) EA %m | L. g INe Fress

Data Structures and Algorithm Analysis in C (Second Edition)

1t

IR

EH58H

4R

-~

b

AT

I

B & ik
(SEXTHR - SB2HR)

i

C

4
;«

g
=
<

BFECERAT

Engkish reprint edition copyright © 2010 by Pearson Education Asia Limited
and China Machine Press.

Original English language title: Data Structures and Algorithm Analysis in C,
Second Edition (ISBN 978-0-201-49840-0) by Mark Allen Weiss, Copyright © 1997.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A FE L ENR B Pearson Education Asia Ltd FERALHK Tk HARF MK H
M. XLHREBTEFT, FPRUEMHTREHSPEEBNE.
URFHREARKEEAN (FEEBERTEEE., RIFINTEHES
EHX) #HERT.
- A4 ENEHPearson Education (¥rAEFFHRER) SOEBthr%E, T
IEEAREE.

HET IR A R
BIFRAE ., B8R
FHEEME ALRHREBNES R

F BRI EIZS. EAF: 01-2010-4175

BBERME (CIP) iR

BRESHMERESI. CIESHER (R - B2MR) / (£) HH (Weiss,
M.A.) ZF. —3b3: PRI dikR+E, 2010.7

(B HFRRFFE)

F4JE3: Data Structures and Algorithm Analysis in C, Second Edition

ISBN 978-7-111-31280-2

I.% 0.%F- . OKE\EW-EX QEESH-EX OCEZ-B
Fiki—-F¥3r V. ®TP311.12 @TP312

HE R A BB ECIPHEZ T (2010) $131749%

VLB Tl Rt (e hlRE S5 A28 dRs4FS 100037)
FEHRE: =647

AL IR EN 45 17 BR 2 7 Bl

20104E8 H 4 1 Hi 25 1 i EN

150mm x 214mm - 16.5E[15k

FrifEHE . ISBN 978-7-111-31280-2

EHr: 45007

LA, AT, BT, B, fBAitRTiEh
ZRRPLE. (010) 88378991, 88361066

Wik . (010) 68326294, 88379649, 68995259
BfEtek. (010) 88379604

iRF1EH . hzjsj@hzbook.com

LREBENS

XEF LB, Bk FHEREMME SRR IE, #H
7 ERKEHABENEANCURRE T 2B MRS, hERXHE
g, EEEEREBEARRRIANTEFERAAKEN. MEGRNE, £k
fLeyttEd, XENT LR SHFTFFERBETE S, HEHLERH
HIF 2 B AL SR B B AL FHR B2 I Bl g, LM £ 2
1B, AOUERTHRRTER:, DR THEARNEE, BEEEAHRTE,
X BHFEME, KM EHTSEE AR MR .

LA, ELREBMKRHIHESN T, REMHREN ™LX REE,
MEWAARIFTERH B, XA EHLBHE FA0H RS R L&,
ki MELEMPBRERFTRE LEA#ERE, ARERFE
AR R RBRMEIER T, XEFREERELTREILBZZRIIL
TERREMZROZSUEM DA TS EBEE 2. Bk, 1%t
ESMLTE tH BAL B R R E BB T LR R BRI
M, e SHFEN,. BREENER —RAFNLHZE,

PR Lok AR AR R A AR R RIRE] “HREABFTRS . B1998
FEIFG, JATEE TIEE AR T38%E, BERIIMBEM L, 242
FHIAMWE B, FH1E5Pearson, McGraw-Hill, Elsevier, MIT, John
Wiley & Sons, CengageZ¥thtFE LA TR TRIFHUEIERR, N
B A B 5 &\ Fh 24 8% H Andrew S. Tanenbaum, Bjarne
Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V.

Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz,
William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson®F KM A KA —#HLBHIESR, UL “UHRIFHEAS" A8
i, fLiRE2] HARE®. KEASGEMHE, WEELTXEMNM
BHY A ALAIRE A
‘UEHILBHZEAE" WHRTESS TENIMZER M OEE, H
WL KA T BERIEREE S, EAEES S A T BIEME K

iv

M LYE: MR BREE LAY RERERETENEE, ANEEED
HBHiEsfEF. €4, “HEILFEAE" Q2R TERE 4
B, XSBEERE PR T RFPOME, HHEFEEERANERK
MRS ZRFE, KRR “SMFRRBE" 1EATRE bl % L
HERUE BRI ER BT R o

BBHIER . SMOEH . —RATEE . TROER, HHENRE,
XERBERMNVELE TREMORIE. BEIREILAEE5E8ART LS
FHE IR AU SEE B R ER R IR, BFFEINHEILE 0
FRAPABEL A AT R, RIONOBERRRERE, RN
BELERBNNBH X —L R BRI EERE). EEAFREEIMMEE
HEANP TR HBUSES THIE, RINOEKAGEWT:

£ERMYL. www.hzbook.com

B F {4 . hzjsj@hzbook.com - H
BERHBIE. (010) 88379604 HZBum(
KRB AFFERREGT AT HEYH

\

PREFACE

Purpose/Goals

This book describes data structures, methods of organizing large amounts of data,
and algorithm analysis, the estimation of the running time of algorithms. As com-
puters become faster and faster, the need for programs that can handle large amounts
of input becomes more acute. Paradoxically, this requires more careful attention to
efficiency, since inefficiencies in programs become most obvious when input sizes are
large. By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint for
large amounts of data from 16 years to less than a second. Therefore, no algorithm
or data structure is presented without an explanation of its running time. In some
cases, minute details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency.

This book is suitable for either an advanced data structures (CS7) course or
a first-year graduate course in algorithm analysis. Students should have some know-
ledge of intermediate programming, including such topics as pointers and recursion,
and some background in discrete math.

Approach

I believe it is important for students to learn how to program for themselves, not
how to copy programs from a book. On the other hand, it is virtually impossible to
discuss realistic programming issues without including sample code. For this reason,
the book usually provides about one-half to three-quarters of an implementation,
and the student is encouraged to supply the rest. Chapter 12, which is new to this
edition, discusses additional data structures with an emphasis on implementation
details.

vi

Preface

The algorithms in this book are presented in ANSI C, which, despite some
flaws, is arguably the most popular systems programming language. The use of C
instead of Pascal allows the use of dynamically allocated arrays (see, for instance,
rehashing in Chapter 5). It also produces simplified code in several places, usually
because the and (8 &) operation is short-circuited.

Most criticisms of C center on the fact that it is easy to write code that is barely
readable. Some of the more standard tricks, such as the simultaneous assignment
and testing against 0 via

if (x=y)

are generally not used in the text, since the loss of clarity is compensated by only a
few keystrokes and no increased speed. I believe that this book demonstrates that
unreadable code can be avoided by exercising reasonable care.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only
way to be comfortable with recursion is to see good uses over and over. Therefore,
recursion is prevalent in this text, with examples in every chapter except Chapter 5.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic anal-
ysis and its major weaknesses. Many examples are provided, including an in-depth
explanation of logarithmic running time. Simple recursive programs are analyzed
by intuitively converting them into iterative programs. More complicated divide-
and-conquer programs are introduced, but some of the analysis (solving recurrence
relations) is implicitly delayed until Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding
these data structures using ADTs, fast implementation of these data structures, and
an exposition of some of their uses. There are almost no programs (just routines),
but the exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The UNIX file system and expression trees are used as examples.
AvL trees and splay trees are introduced but not analyzed. Seventy-five percent of the
code is written, leaving similar cases to be completed by the student. More careful
treatment of search tree implementation details is found in Chapter 12. Additional
coverage of trees, such as file compression and game trees, is deferred until Chapter
10. Data structures for an external medium are considered as the final topic in
several chapters.

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of
priority queues. The Filonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.

Preface

Chapter 7 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. The analysis of the average-case running time of heapsort is new to
this edition. External sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is
so heavily dependent on the proper use of data structures. Virtually all of the standard
algorithms are presented along with appropriate data structures, pseudocode, and
analysis of running time. To place these problems in a proper context, a short
discussion on complexity theory (including NP-completeness and undecidability) is
provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 is new to this edition. It covers search tree algorithms, the k-d tree,
and the pairing heap. This chapter departs from the rest of the text by providing
complete and careful implementations for the search trees and pairing heap. The
material is structured so that the instructor can integrate sections into discussions
from other chapters. For example, the top-down red black tree in Chapter 12 can
be discussed under AvL trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course
on algorithm analysis could cover Chapters 7-11. The advanced data structures
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a
course. Garey and Johnson’s book on NP-completeness can be used to augment this
text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

A solutions manual containing solutions to almost all the exercises is available
to instructors from the Addison-Wesley Publishing Company.

vii

viii

Preface

References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references
represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp
at aw.com. It is also accessible through the World Wide Web; the URL is
http://www.aw.com/cseng/ (follow the links from there). The exact location of
this material may change.

Acknowledgments

Many, many people have helped me in the preparation of books in this series. Some
are listed in other versions of the book; thanks to all.

For this edition, I would like to thank my editors at Addison-Wesley, Carter
Shanklin and Susan Hartman. Teri Hyde did another wonderful job with the
production, and Matthew Harris and his staff at Publication Services did their usual
fine work putting the final pieces together.

M.A.W.

Miami, Florida
July, 1996

1 Introduction

1.1
1.2,

1

CONTENTS

What's the Book About? 1
Mathematics Review 3

1.2.1.
1.2.2.
1.2.3.
1.24.
1.2.5.

Summary
Exercises

Exponents

Logarithms

Series

3
3
4

Modular Arithmetic 5
The P Word 6

1.3. A Brief Introduction to Recursion 8

References

2 Algorithm Analysis
Mathematical Background 15

2.1.
2.2.
2.3.
2.4.

Model

18

What to Analyze
Running Time Calculations 20

12
12
13

15

18

A Simple Example 21

Solutions for the Maximum Subsequence Sum Problem 24
Logarithms in the Running Time 28
Checking Your Analysis 33

2.4.1.

2.4.2. General Rules 21

2.4.3.

2.4.4.

2.4.5.

2.4.6. A Grain of Salt 33
Summary 34
Exercises 35
References 39

x Contents

3 Lists, Stacks, and Queues 41

3.1. Abstract Data Types (aor) 41

3.2. Thelistaor 42
3.2.1. Simple Array Implementation of Lists 43
3.2.2. Linked Lists 43
3.2.3. Programming Details 44
3.24. CommonErrors 49
3.2.5. DoublyLinked Lists 51
326. Circularly Linked Lists 52
3.2.7. Examples 52
3.2.8. Cursor Implementation of Linked Lists 57

3.3. The Stack apT 62
3.3.1. Stack Model 62
3.3.2. Implementation of Stacks 63
3.3.3. Applications 71

3.4. The Queue ADT 79
3.4.1. Queue Model 79
3.4.2. Array Implementation of Queues 79
3.4.3. Applications of Queues 84
Summary 85
Exercises 85

4 Trees 89

4.1. Preliminaries 89
4.1.1. Implementation of Trees 90
4.1.2. Tree Traversals with an Application 91

4.2. Binary Trees 95
4.2.1. Implementation 9%
4.2.2. Expression Trees 97

4.3. The Search Tree AoT—Binary Search Trees 100
431. MakeEmpty 101
4.3.2. Find 101
4.3.3. FindMin and FindMax 103
4.34. Insert 104
4.3.5. Delete 105
4.3.6. Average-Case Analysis 107
4.4. . Trees 110
“4.4.1. singleRotation 112
4.4.2. Double Rotation 115

Contents xi

4.5. Splay Trees 123
4.5.1. A Simple Idea (That Does Not Work) 124

452. Splaying 126
4.6. Tree Traversals (Revisited) 132
4,7. B-Trees 133

Summary 138
Exercises 139
References 146

5 Hashing 149

5.1. General Idea 149

5.2. Hash Function 150

5.3. Separate Chaining 152

5.4. Open Addressing 157
5.4.1. Linear Probing 157
542 QuadraticProbing 160
5.4.3. Double Hashing 164

5.5. Rehashing 165

5.6. Extendible Hashing 168
Summary 171
Exercises 172
References 175

6 Priority Queues (Heaps) 177
6.1. Model 177
6.2. Simple Implementations 178

6.3. Binary Heap 179
6.3.1. Structure Property 179
6.3.2. Heap Order Property 180
6.3.3. Basic Heap Operations 182
6.3.4. Other Heap Operations 186
6.4. Applications of Priority Queues 189
6.4.1. The Selection Problem 189
6.4.2. Event Simulation 191

xii Contents

6.5.
6.6.

6.7.
6.8.

d-Heaps 192
Leftist Heaps 193
6.6.1. Leftist Heap Property 193
6.6.2. Leftist Heap Operations 194
Skew Heaps 200
Binomial Queues 202
6.8.1. Binomial Queue Structure 202
6.8.2. Binomial Queue Operations 204
6.8.3. Implementation of Binomial Queues 205
Summary 212
Exercises 212
References 216

7 Sorting 219

7.1
7.2.

7.3.
7.4.
Toks
7.6.

7.7.

7.8.
7.9.

7.10.
7.11.

Preliminaries 219
Insertion Sort 220

7.2.1. The Algorithm 220
7.2.2. Analysis of Insertion Sort 221

A Lower Bound for Simple Sorting Algorithms

Shellsort 222
7.4.1. Worst-Case Analysis of Shellsort 224
Heapsort 226

7.5.1. Analysis of Heapsort 228

Mergesort 230
7.6.1. Analysis of Mergesort 232
Quicksort 235
7.7.1. Picking the Pivot 236
7.7.2. Partitioning Strategy 237
7.73. Small Arrays 240
7.7.4. Actual Quicksort Routines 240
7.75. Analysis of Quicksort 241
7.7.6. A Linear-Expected-Time Algorithm for Selection

Sorting Large Structures 247

A General Lower Bound for Sorting 247
7.9.1. Decision Trees 247

Bucket Sort 250

External Sorting 250
7.11.1. Why We Need New Algorithms 251
7.11.2. Model for External Sorting 251

221

245

Contents

7.11.3. The Simple Algorithm 251
7.11.4. Multiway Merge 253
7.11.5. Polyphase Merge 254
7.11.6. Replacement Selection 255
Summary 256

Exercises 257

References 261

8 TheDisjoint SetAbr 263

8.1
8.2.
8.3.
84.
8.5.
8.6.

8.7.

Equivalence Relations 263

The Dynamic Equivalence Problem 264

Basic Data Structure 265

Smart Union Algorithms 269

Path Compression 271

Worst Case for Union-by-Rank and Path Compression 273
8.6.1. Analysis of the Union/Find Algorithm 273

An Application 279

Summary 279

Exercises 280

References 281

9 Graph Algorithms 283

9.1.

9.2.
9.3.

9.4.

9.5.

Definitions 283

9.1.1. Representation of Graphs 284
Topological Sort 286
Shortest-Path Algorithms 290

9.3.1. Unweighted Shortest Paths 291

9.3.2. Dijkstra’s Algorithm 295

9.3.3. Graphs with Negative Edge Costs 304

9.3.4. Acyclic Graphs 305

9.3.5. All-Pairs Shortest Path 308
Network Flow Problems 308

9.4.1. A Simple Maximum-Flow Algorithm 309
Minimum Spanning Tree 313

9.5.1. Prim’s Algorithm 314

9.5.2. Kruskal's Algorithm 316

xiii

xiv Contents

9.6. Applications of Depth-First Search 319
9.6.1. Undirected Graphs 320
9.6.2. Biconnectivity 322
9.6.3. Euler Circuits 326
9.6.4. Directed Graphs 329
9.6.5. Finding Strong Components 331

9.7. Introduction to NP-Completeness 332
9.7.1. Easyvs.Hard 333
9.7.2. The Class NP 334
9.7.3. NP-Complete Problems 335

Summary 337
Exercises 337
References 343

10 Algorithm Design Techniques 347

10.1. Greedy Algorithms 347
10.1.1. ASimple Scheduling Problem 348
10.1.2. Huffman Codes 351
10.1.3. Approximate Bin Packing 357

10.2. Divide and Conquer 365
10.2.1. Running Time of Divide and Conquer Algorithms 366
10.2.2. Closest-Points Problem 368
10.2.3. - The Selection Problem 373
10.2.4. Theoretical Improvements for Arithmetic Problems 376

10.3. Dynamic Programming 380
10.3.1. Using a Table Instead of Recursion 380

10.3.2. Ordering Matrix Multiplications 383
1033. Optimal Binary SearchTree 387
10.3.4. All-Pairs ShortestPath 390
10.4. Randomized Algorithms 392
10.4.1. Random Number Generators 394
104.2. SkiplLists 397
10.4.3. Primality Testing 399
10.5. Backtracking Algorithms 401
10.5.1. The Turnpike Reconstruction Problem 403
10.5.2. Games 407
Summary 413
Exercises 415
References 422

