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PREFACE

Purpose/Goals

This book describes data structures, methods of organizing large amounts of data,
and algorithm analysis, the estimation of the running time of algorithms. As com-
puters become faster and faster, the need for programs that can handle large amounts
of input becomes more acute. Paradoxically, this requires more careful attention to
efficiency, since inefficiencies in programs become most obvious when input sizes are
large. By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint for
large amounts of data from 16 years to less than a second. Therefore, no algorithm
or data structure is presented without an explanation of its running time. In some
cases, minute details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency.

This book is suitable for either an advanced data structures (CS7) course or
a first-year graduate course in algorithm analysis. Students should have some know-
ledge of intermediate programming, including such topics as pointers and recursion,
and some background in discrete math.

Approach

I believe it is important for students to learn how to program for themselves, not
how to copy programs from a book. On the other hand, it is virtually impossible to
discuss realistic programming issues without including sample code. For this reason,
the book usually provides about one-half to three-quarters of an implementation,
and the student is encouraged to supply the rest. Chapter 12, which is new to this
edition, discusses additional data structures with an emphasis on implementation
details.



vi

Preface

The algorithms in this book are presented in ANSI C, which, despite some
flaws, is arguably the most popular systems programming language. The use of C
instead of Pascal allows the use of dynamically allocated arrays (see, for instance,
rehashing in Chapter 5). It also produces simplified code in several places, usually
because the and (8 &) operation is short-circuited.

Most criticisms of C center on the fact that it is easy to write code that is barely
readable. Some of the more standard tricks, such as the simultaneous assignment
and testing against 0 via

if (x=y)

are generally not used in the text, since the loss of clarity is compensated by only a
few keystrokes and no increased speed. I believe that this book demonstrates that
unreadable code can be avoided by exercising reasonable care.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only
way to be comfortable with recursion is to see good uses over and over. Therefore,
recursion is prevalent in this text, with examples in every chapter except Chapter 5.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic anal-
ysis and its major weaknesses. Many examples are provided, including an in-depth
explanation of logarithmic running time. Simple recursive programs are analyzed
by intuitively converting them into iterative programs. More complicated divide-
and-conquer programs are introduced, but some of the analysis (solving recurrence
relations) is implicitly delayed until Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding
these data structures using ADTs, fast implementation of these data structures, and
an exposition of some of their uses. There are almost no programs (just routines),
but the exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The UNIX file system and expression trees are used as examples.
AvL trees and splay trees are introduced but not analyzed. Seventy-five percent of the
code is written, leaving similar cases to be completed by the student. More careful
treatment of search tree implementation details is found in Chapter 12. Additional
coverage of trees, such as file compression and game trees, is deferred until Chapter
10. Data structures for an external medium are considered as the final topic in
several chapters.

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of
priority queues. The Filonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.
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Chapter 7 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. The analysis of the average-case running time of heapsort is new to
this edition. External sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is
so heavily dependent on the proper use of data structures. Virtually all of the standard
algorithms are presented along with appropriate data structures, pseudocode, and
analysis of running time. To place these problems in a proper context, a short
discussion on complexity theory (including NP-completeness and undecidability) is
provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 is new to this edition. It covers search tree algorithms, the k-d tree,
and the pairing heap. This chapter departs from the rest of the text by providing
complete and careful implementations for the search trees and pairing heap. The
material is structured so that the instructor can integrate sections into discussions
from other chapters. For example, the top-down red black tree in Chapter 12 can
be discussed under AvL trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course
on algorithm analysis could cover Chapters 7-11. The advanced data structures
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a
course. Garey and Johnson’s book on NP-completeness can be used to augment this
text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

A solutions manual containing solutions to almost all the exercises is available
to instructors from the Addison-Wesley Publishing Company.

vii
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References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references
represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp
at aw.com. It is also accessible through the World Wide Web; the URL is
http://www.aw.com/cseng/ (follow the links from there). The exact location of
this material may change.
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