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0. Introduction and summary

Despite the attention this theory has received over recent years, there are many
problems left essentially unsolved concerning the longtime behaviour of solutions
to the Cauchy problem for the nonlinear Schrodinger equation (NLS for short)

S D—2 __
{ tug + Au £ ufulf , =0 (0.1)
u(0) = ¢ € H*(RY)
with Hamiltonian
1 . 1
HO) = [ | |5196P 7 Jlor|as 02
R p

Although the initial value problem (IVP) theory is satisfactory for local time be-
haviour and small data, many issues on the behaviour of solutions for large data
are far from understood. In the following case (i.e. "+" sign in (0.1)), it is well
known that for p > 2 + %, smooth solutions of (0.1) may blowup in finite time.
There is a vast problematic in this context, concerning questions such as blowup
speed, blowup profile and its stability etc., pursued both purely mathematically
and numerically. This body of problems will not be our primarily issue here and we
will only comment on a few aspects of recent research. We will rather concentrate
on equation (0,1) in the defocusing case, when it is expected that local solutions
extend to global ones and preserve their H®-class for all time, with scattering be-
haviour for sufficiently high degree nonlinearity. We are particularly interested in
two problems that we describe briefly next.

(i) The H'-critical equation
Consider the NLS

4
iu¢+Au—u|u|p_2 =0, p=2+ m (d>3) (03)

for which the homogeneous H'-space H' is the scale invariant Sobolev space. It is
known that there is local wellposedness for any data ¢ € H®, s > 1 and the result
is global for data small in H!. It is an open problem whether classical solutions
exist global in time. Remark that since the Hamiltonian (and the L?-norm) provide
the only apriori bounds on the solution, also a classical theory needs to include a

1



2 J. BOURGAIN

considerable component that is purely H'. We have solved the question for radial
data for d = 3,4, proving global wellposedness and scattering in the energy space
and any H®, s > 1. The corresponding result for the nonlinear wave equation
(NLW)

Oy+3P =y —Ay+y? 1 =0 (0.4)

was established some time ago by Struwe [Str] in the radial case and by Grillakis
[Gr] in general; see also the paper [S-S]. The main problem in the NLS-case is
that the corresponding Morawetz-type inequality is apriori to weak to exclude H'!-
concentration phenomena. This is the main issue in this questions.

The results for NLS appear in [B1]. In 3D, the proof presented here is a bit less
technical we believe. The problem in 4D (and higher dimension) comes from the
lower degree nonlinearity (the quintic nonlinearity is exploited in the 3D proof).
The method followed here for the equation

iy + Au — ulul* =0 (0.5)
in 4D compared with the presentation in [B1] is less dependent on the particular

nonlinearity.

For general (non-radial) data, the problem of global wellposedness is still open,
also for classical solutions.

(i) Wellposedness below the energy norm

The IVP ;
{ iu + Aut ululP~2 =0 (0.6)
u(0) =¢ c H® '
is locally wellposed if we assume
s>0
and if p > 2+ %
§ > 84, Sy defined by p =2 + (0.7)

d—2s,

Moreover, if s > s,, the time interval AT may be bounded below by a function of
@l 7. It follows that in the defocusing case there is global wellposedness in the
energy space provided p < 2+ (;‘TQ. Our interest here is to get global results below
the energy-norm. An optimal result would be to show that in the defocusing case,
under assumptions (0.7), the local solution of (0.6) extends to a global one. This
is unknown for large data, even in the L?-critical case

4
p:2—|—3 (08)

(the conformal equation).

We did however develop a new and rather general method to obtain global
wellposedness results for data ¢ € H®, for certain s < 1. This method exploits
the apriori bound on the H'-norm from the Hamiltonian conservation, although
the data is below that threshold. It is based on decomposing in a suitable way the
solution in its low and high Fourier modes. As an example, the following fact is
established in [B2].
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The IVP in 2D

{ iug + Au —ulul? =0 0.9)
u(0) = ¢ € H*(R?) '
is globally wellposed provided s > % and moreover

u(t) — e'®¢ € H! for all time . (0.10)

As mentioned, our technique has general features and is not restricted to NLS. We
have investigated also certain examples of nonlinear wave equations

{ Dy+ayf(x7y):ytt_Ay+6yf(x7y)=0 (0 11)
(y(O),y(O)) € H° x H57 1, ’
The case s = % is of particular interest since this corresponds to the symplectic
space. Establishing a global flow on the symplectic Hilbert space is certainly of
interest in view of applying the symplectic capacity theory (considering say peri-
odic boundary conditions) as developed by many authors starting from Gromov’s
work (our reference will be [Kuk1] for the theory in infinite symplectic dimensional
symplectic phase space).

Global wellposedness in the symplectic space is proven in particular for the
NLW

yre — Dy +py+y* =0 (0.12)
with periodic bc in D = 1, D = 2. These results are also new.

The first chapter of the paper is more of a survey type. We also indicate some
results on derivative NLS of the form

iug + Au+ F(u,u, Vyu,V,u) =0 (0.13)

(cf. [K-P-V] and subsequent papers). This topic is again a most interesting issue
that will not be considered here. In fact, it is fair to say that most of the theory
around (0.13) deals with local in time results, except for small data.

In chapter II, we will comment on a few related directions of current research
that will not be developed further here. These include

(1) Perturbations of the groundstate solution for the conformal NLS in the
focusing case and applications to blowup solutions.

(2) Fourier restriction theory beyond L?; relation to problems of combinatorial
type such as the dimension conjecture for Besicovitch sets; applications to
the maximal function associated to the linear Schrédinger group and to
L?-concentration phenomena for NLS.

(3) Further results on derivative NLS.

In chapter I1I, we discuss the defocusing H'-critical NLS (0.3) in the radial
case.

In Chapter IV, we consider the problem of establishing global solutions below
the energy norm for defocusing H!-subcritical NLS and NLW.

In Chapter V of this paper, we survey investigations related to NLS on bounded
spatial domains, mainly the case of periodic b.c. The problems here are different
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from the R¢%case, partly because of the absence of dispersion. Besides the Cauchy
problem, we will discuss results and problems related to invariant Gibbs measures
and the existence and persistency of invariant KAM (Kolmogorov-Arnold-Moser)
tori. Again all these topics are active research areas.

There are two Appendices included.

Appendix 1 deals with the problem of growth of higher Sobolev norms in linear
Schrodinger equations with bounded, smooth, time periodic potential V = V (z, ),
thus of the form

iy + Au+ V(e H)u=0 u(0) = ¢ € H? (0.14)

(periodic bc). Although in the nonlinear context, this problem is far from under-
stood, for equation (0.14) a very satisfactory and surprisingly general result may
be shown (in any dimension)

lu@®)]gs < Cel|t]® ||@]| = when [t] — oo, for all € > 0. (1.15)
Observe that there is no specified behaviour of V in time ¢, besides smoothness.

We consider the D = 1 case. See [B14] for general dimension and further results.

In Appendix 2, we will summarize research over the recent years on the Za-
kharov system

iy = —Au + nu
(0.16)

ny — c2An = 2 A(|u|?)

(the physical meaning of u, n, ¢ are respectively the electrostatic envelope field, the
ion density fluctuation field and the ion sound speed). The cubic NLS

iug + Au £ uu* =0 (0.17)

may thus be viewed as the limit of (0.16) when ¢ — oo.

Global existence of classical solutions for the defocusing 3D equation was only
proven recently (in joint work with J. Colliander cf. [B-C]). Considering periodic
be, we will also discuss the invariant measure problem in 1D.

The present Notes are based on AMS Colloquium Lectures given in Cincinatti
(1994), lectures given at Park City in 1995 and UCLA 1998. Part of the material
is not published elsewhere.
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I. An overview of results on the Cauchy problem for NLS
1. Equations
A first distinction should be made between equations without (resp with) a
presence of derivatives in the nonlinearity. Thus
iuy + Au+ F(u,u) =0 (without derivatives) (1.1)
tu + Au + F(u,w, V,u, V,u) = 0(F involving first order derivatives).
(1.2)

In this chapter, our spatial domain will be mainly R?,d = 1,2,3. The case of
bounded domains, say periodic boundary conditions (z € T? = d dimensional
torus) will be more the subject of Chapter V.

The Cauchy problem for (1.1) has been extensively studied and sharp results
obtained, especially in the case

0 :
Nu.7) = — Py ~ |y|P—2,
F(u,u) 8E(|u| ) ~ |ulP"u. (1.3)
The equation
. afI() — s aH
wy + Au + 6—ﬂ(u,u) =0=1u + ¥
is Hamiltonian, with Hamiltonian
1 ,
H@) =5 [196F = [ Ho(@), Ho(6) = ol (14)

preserved under the flow.

The “natural” symplectic Hilbert space is the space L? with canonical coordi-
nates (formally) (Reu, Imu).

In the case (1.3) or more generally
Hy = Ho(|ul?)

there is also conservation of the L2-norm

(/wﬁw

under the flow.

In case (1.3), i.e.

g + Au+ MufulP2 =0 (1.5)
with Hamiltonian i A
3 19t = > [lu (1.6)
we distinguish the cases
A >0 = focusing case

A <0 = defocusing case
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In the defocusing case (and p < 6 for d = 3), the conservation of (1.6)
apriori bound on ||u(t)|| g for ¢ € H'.

The case

.
P=27y

is special and called the pseudo-conformally invariant case. If u is a solutio:

so is
) 1 =2 (-1
= —€ t U =
|t|4/2 tt

which gives an additional symmetry.

Cul(z,t

Based on the pc-transformation, one gets for p = 2 + % the pseudo-con
conservation law

2
Iz + 20tV Yu(o)|2 - %—numnz = Jlzgll3.

In the general case, there is an additional term

(o + 2069yl - S0l -

lelol? - %(4 —d(p-2) / s / fu(s,2)Pdeds.

This pc conservation law is particularly useful in the defocusing case A < 0,
p>2+ % and |z|p € L?, since one gets the apriori bound

2. Wellposedness of the Cauchy problem
We consider the case
i+ Au A+ dufulP~2 = 0.
Most of the results stated below have extensions to more general situations.
tion (2.7) is invariant under the scaling
u(z,t) — av? u(az,a’t).

Hence, putting
4

d—280

p—2=

(so = scaling exponent)
the (homogeneous) Sobolev space H*° is invariant under the scaling (2.1).
We then distinguish the cases s = sg, s > sg
§=58p : critical

s> s8g : subcritical



GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS 7

HEOREM 1. (local wellposedness).
ssume u(0) = ¢ € H*, s > 0 and s > sg. Assume alsop —2 > [s] if p & 2Z.
the Cauchy problem
{ iug + Au+ AufulP~? =0
uw(0) = ¢ € H?

'posed on a nontrivial time interval [0, T*| and in particular
u e C}]s([O,T]), T<T".

subcritical case s > so, T* > T(s, ||¢||u=) and the flowmap is Lipschitz on a
rhood of ¢.

emark 1. In the critical case, maximal existence time depends on ¢, not
ol

emark 2. Taked =2,s=0,p=2+ % =4 and assume T < co. Then

.3) lim sup /|u(9:,t)|2das >c (c = fixed constant)
t<T*  jcRd 4
[=(T"~1)'/2

result, valid as well in the focusing as defocusing case, expresses a precise
acentration phenomenon of L2-norm).

is not known if this result is optimal however.

ext result deals with the question when the local solution provided by Theo-
extends to a global one.

HEOREM 2. (global solutions)

he local solution given by Theorem 1 extends to a global one in the following

4
p<2+3

(problem L*-subcritical and use of L?-conservation)
p>2+ ’é and small H®-data (s > sg)
Defocusing case, p < 6 ford =3 and ¢ € H'

(problem H'-subcritical and use of Hamiltonian conservation)

Also true ford =3,p =6 and ¢ € H' a radial function, i.e. H'-critical
case (recent result discussed in Chapter I11)
Defocusing case, p < 6 ford =3, ¢ € H*(s > s0) and |z|p € L?

(use of apriori bound on |[u(t)||, from pc conservation law (1.10))

loreover, additional smoothness of data ¢ is preserved under the flow (provided
itible with smoothness of nonlinearity (see remarks below)).
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Remark 1. For p > 2+ 3 in the focusing case, (sufficiently large) smooth
solutions may blowup in finite time

(i) Glassey’s viriel inequality

dz

ﬁ[/|<py2|x|2dx} <cH(¢)  (¢>0). (2.4)

Hence, if H(¢) < 0, blowup has to occur

ii) For p = 2 + 2 there are constructions of explicit blowup solutions (of minimal
: d
L?-norm) from groundstate and pc transformation.

THEOREM 3. (F. Merle, [M1])

Let u be a solution of

{ iug + Au 4 ulu|t? =0
u(0) = ¢

where ¢ € H' and
¢l = 11Ql2

where ) denotes groundstate, i.e. (unique) solution of
AQ+ Q' = Q,Q positive and radial. (2.5)

Assume u blows up at time T > 0.

Then there exist 0 € R,w > 0,29 € RY, z; € R? such that

u(t,z) = (TL_t

(Uniqueness of minimum L*-norm blowup solutions).

a2 oyt | ey 2 -
) =T {% J}Q<M

— ~wm0> (2.6)

THEOREM 4. [M2]

Giwven a time T and distinct points x1,... ,xx € R?, there is a solution u of
iug + Au 4 ulu|tt =0

which blows up exactly at time t =T in the points {x1,... ,xx } with concentration
of all the L?>-mass on this finite set of points.
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THEOREM 5. [B-W]

Let d = 1,2 (for smoothness reasons).

Denote ug the explicit blowup solution at (T,z1) of iu, + Au+ulu|? = 0 given

by (2.6). Then one may construct solutions u = ug + v on [0, T[ where v is smooth
(# 0) extending smoothly after blowup time T and solving for T < t < T + 1 the

1vpP
{ vy + Av +olu|Y? =0

v(T) = ¢.
Here ¢ may be taken any sufficiently small smooth function on R, vanishing at

sufficiently high order at x = x1 and of fast decay at infinity.

The preceding result shows in particular that at blowup time all of the L?-norm
need not be absorbed in the blowup. Theorem 5 is a more recent result and we will
comment on it in the next chapter.

Remark 2. Assume ¢ € H°, s > 1 and p < 6 for d = 3 and nonlinearity
sufficiently smooth
(i) If sup ||u(t)||z;1 < oo (in particular in the defocusing case), then u(t) € H®
for all time and
lu(@) s < (14 ]2))9C70.

For d = 3,
lu(@)llg, < Cllellas)
(ii) Assume defocusing case, p > 2+ 5 (and p < 6 for d = 3).

If moreover |z|p € L?, then

l[u@®llers < Cllelles llzell2)

(and one has scattering in H*).
Same statement holds for d = 3 without decay assumption, thus if d = 3,
defocusing, p < 6, sufficiently smooth nonlinearity (depending on s), then
p=u(0) e H*,s > 1=
lu(®)]|gs < C(||¢||lgs) for all time
and one has moreover scattering in H*®.

(this is in particular the case for p = 4).

Remark 3. The main problems regarding the global Cauchy problem

, i.e. L?=scale invariant space).

(1) L*-critical defocusing case (p =2+ 3

Is T* = oo for ¢ € L??

Known in the following cases

(i) llll2 small
(i) p€ H!
(iii) |z|e € L?
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For d =2
Case (ii) may be improved to ¢ € H®, s > ;i

Case (iii) may be improved to |z|*¢p € L?, s > 2

(2) H'-critical case (H' = scale invariant space)
3D iy + Au — ujul* =0
Do classical solutions exist for all time?

Recently proved affirmative in radial case

[Known (affirmatively) for the 3D wave equation (Struwe, Grillakis)
Oy +y° = yu — Ay +y° = 0].
Similar problem and result in 4D for equation
iug 4+ Au — ulul? = 0.

3. Scattering results

(1.5) has the following equivalent integral equation
t
u(t) = e —i)\/ T (ulu[P?) (r)dr
0
= "2 (Q, ) +iX / e’ (ululP~2)(r)dr
i

where -
Qp=¢p— i)\/ e_”A(u|u|p72)(T)dT.
0

Scattering in H® means

Q,pecH®

Ju(t) — e 2(Q, @) as == 0.

We list a number of instances where scattering is known to occur.
(1) Small data scattering

p>2+13.

Essentially byproduct of IVP-analysis.
(2) Global scattering with decay

Assume defocusing NLS and

2—d++Vd?+12d + 4 B
2d -

<§ <a(d) < 3)

a(d) < p—2(< 4 for d = 3)



