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Preface

Crystalline semiconductors, often in the form of thin films, are
crucial materials for many modern, advanced technologies in fields
such as microelectronics, optoelectronics, display technology, and
photovoltaic technology. Unfortunately, thin films of semiconductors
produced by vapor deposition techniques are usually in a low-
performance, amorphous form. The transformation of low-
performance, amorphous semiconductors into high-performance,
crystalline semiconductors is one of the most important and most
challenging steps to advance the above-indicated technologies.

Metals in contact with amorphous semiconductors can induce the
crystallization of these amorphous semiconductors at surprisingly
low temperatures (as low as 120°C). This so-called metal-induced
crystallization (MIC) process was firstly observed more than 40
years ago. In recent years, the MIC process has attracted great
scientific and technological interest because it principally allows the
production of crystalline semiconductor-based advanced devices at
low temperatures directly on heat-sensitive components, such as
plastics, which would otherwise have not been possible.

As a result of numerous investigations by different research
groups all over the world, the fundamental aspects of the MIC process
in various metal/amorphous semiconductor systems have now
been disclosed, partly in great detail. MIC represents an intriguing
solid-solid phase transformation phenomenon occurring/initiating
particularly at surfaces and interfaces in thin-film (nano)systems.
In such systems, the phase transformation is not simply controlled
by bulk thermodynamics: the (excess) Gibbs energy associated with
surfaces and interfaces in the systems may play a significant or
even dominant role. Moreover, the Kinetics of phase transformation
in thin-film (nano)systems can be quite different from that in bulk
systems, for example, because of the presence of a relatively large
amount of defects (as grain boundaries and dislocations), possibly
also providing fast diffusion paths. Fundamental research on the
MIC process thus presents an attractive road to deeper insight into
the role of interface energetics and kinetics in solid-solid phase
transformations.
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Preface

Advances in the fundamental understanding of the MIC process
have resulted in pronounced progress in sophisticated applications
of the MIC process in many technologies. This, for example, holds
for the production of high-efficiency, low-cost, thin-film crystalline
silicon solar cells of advanced flat-panel displays, and of Blu-ray data
storage devices.

The present book, for the first time, summarizes the existing
knowledge and broad range of applications of the MIC process of
amorphous semiconductors. The book firstly addresses the current
knowledge and achieved fundamental understanding of MIC
processes (Chapters 1-4). Next, the book elucidates how to employ
MIC processes in advanced technologies, for example, in novel, state-
of-the-art solar cell and display technologies (Chapters 5-7). The
aim is to give the reader a comprehensive perspective of the MIC
process and thereby to stimulate the future development of novel
crystalline semiconductor-based thin-film technologies.

Zumin Wang
Lars P. H. Jeurgens
Eric J. Mittemeijer

Stuttgart, Germany
Winter 2014
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Chapter 1

Introduction to Metal-Induced
Crystallization

Zumin Wang,? Lars P. H. Jeurgens,** and Eric ]. Mittemeijer®"
aMax Planck Institute for Intelligent Systems, HeisenbergstrafSe 3,

D-70569 Stuttgart, Germany

bInstitute for Materials Science, University of Stuttgart,

D-70569 Stuttgart, Germany

z.wang@is.mpg.de

This chapter gives a historical overview of research performed on the
metal-induced crystallization (MIC) process. The MIC temperatures
and behaviors for a wide range of metal/amorphous semiconductor
systems, as reported in the literature (data obtained using different
experimental approaches), have been summarized and tabulated.
The development of an understanding of the mechanisms controlling
MIC, and related phenomena such as layer exchange, as well as the
technological applications of these processes have been sketched as
an introduction to later chapters of this book.
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Introduction to Metal-Induced Crystallization

1.1 A Brief History of Metal-Induced
Crystallization

In 1969, Oki etal. [1] observed thatamorphous Ge (a-Ge) crystallizes
at surprisingly low temperatures when it is in contact with a metal
such as Al, Ag, Au, Cu, or Sn. Shortly thereafter; Bosnell and Voisey
reported that such decreased crystallization temperatures also occur
for amorphous Si (a-Si) in contact with a metal [2]. In both studies,
the amorphous semiconductors (and the metals) were prepared
by vacuum evaporation and an electron diffraction technique was
used to detect the occurrence of crystallization. Thereafter, more
detailed electron microscopic investigations of this striking effect
were carried out by Herd et al. [3] and Ottaviani et al. [4-6], and this
phenomenon was named metal-contact-induced crystallization [3],
nowadays usually referred to as metal-induced crystallization (MIC).
The MIC process was found to be associated with intermixing
of the semiconductor and the metal, and small crystallites of Si or
Ge could indeed be found to have formed in the metal [3-6]. On
the basis of these observations, the MIC effect was interpreted as
the result of initial dissolution of the semiconductor into the metal,
followed by precipitation of the crystalline semiconductor out of the
metal matrix [4-6]. An important role of fast atomic transport along
the metal/semiconductor interface was indicated in these early
studies [3-6]. A very different interpretation of the MIC effect was
given by Brodsky and Turnbull [7], who instead suggested that MIC
would be mediated by the formation of a low-temperature eutectic
melt caused by lowering of the binary eutectic temperature when
one of the two components (i.e., the semiconductor) is amorphous.
As compared to the above-described early interpretative efforts,
understanding of the MIC process was greatly advanced in the early
1990s by the application of in situ heating transmission electron
microscopy (TEM) techniques, which were developed in the late
1980s. By employing in situ heating high-resolution transmission
electron microscopy (HRTEM), the MIC process in layered structures
of simple eutectic metal semiconductor systems, such as crystalline
Al (c-Al)/a-Si [8], crystalline Ag (c-Ag)/a-Ge [9], and c-Ag/a-Si
[10], was investigated. It was shown that the MIC process does not
involve the formation of any liquid phase: it is a fully solid-state
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process [8-12]. Furthermore, no formation of any (metastable)
metal semiconductor compound(s) was detected during MIC in
such systems [8-12]. The MIC process in a compound (silicide)-
forming system such as Ni/a-Si was also investigated by in situ
heating HRTEM [13, 14]. It was concluded in this work that in such
a system MIC is mediated by the initial formation of a solid silicide
phase (NiSi,), which subsequently migrates into/within the a-Si film
with formation of a crystalline Si (c-Si) phase in the wake of the NiSi,
[13, 14].

In the late 1990s, (related) processes such as metal-induced layer
exchange (MILE) [15-17] and metal-induced lateral crystallization
(MILC) [18-20] were identified. It was found that upon MIC in,
for example, a c-Al/a-Si bilayer, the Al and Si sublayers exchange
their original locations [15]. As a result, a nearly continuous c-Si
layer is formed at the original location of the metal (Al) sublayer
at low temperatures (see Fig. 1.1D). Such a MILE process can be
very useful for low-temperature production of thin-film crystalline
semiconductors, in particular for thin-film photovoltaic applications
(see Chapter 5). In MILC, a compound (e.g, silicide)-forming metal
(e.g., Ni or Pd) is firstly grown in a patterned way on top of an
amorphous semiconductor layer (e.g., a-Si). Upon annealing, it was
found that the crystalline modification of the semiconductor not only
grew at the metal-covered region but also grew laterally outside the
metal coverage (see, e.g., Fig. 1.2D,E). Such MILC can be very useful
for low-temperature preparation of polycrystalline Si thin films for
applications in thin-film transistors in advanced flat-panel displays
(see Chapter 6).

Thethermodynamicsand kinetics of MICand MILE processes have
been investigated systemically since 2003 in our research group led
by Prof. Mittemeijer [21-37]. A unified, quantitative understanding
of the MIC process occurring in various metal-semiconductor
systems has been achieved on the basis of interface thermodynamics.
On this basis the very different MIC temperatures and behaviors in a
wide range of metal/amorphous semiconductor systems have been
successfully predicted [29, 30, 33] (see Chapter 2). The kinetics of
MIC and MILE were described on the basis of quantitative evaluation
of the (inter)diffusion kinetics in metal/semiconductor layered
systems by using Auger electron spectroscopy (AES) depth profile
measurements [21, 23, 28] (see Chapter 3). Very recently, advanced

3
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A

initial state

grain boundary a-Si welling film

crystallized Si

120 °c

240 °C AlISi layer exchange at 280 °C

Si
el Si0, substrate

Figure 1.1

(A) Schematic illustration of the mechanism of Al-induced
crystallization of a-Si in c-Al/a-Si bilayers. Initially, GBs
in the Al overlayer get “wetted” by a-Si. Beyond a critical
thickness of the “wetting” a-Si film at a temperature above
140°C, crystallization initiates at these “wetted” Al GBs and
the formed c-Si grain subsequently grows laterally in the Al
overlayer. Reprinted with permission from Ref. [33], Copyright
2009, John Wiley and Sons. (B) In situ heating valence energy-
filtered TEM observation of “wetting” of an Al GB by a-Si during
annealing of a 100 nm c-Al/150 nm a-Si bilayer. The increase
in the plasmon loss energy at the location of the Al GB near the
c-Al/a-Si interface observed at 120°C (left) demonstrates the
initial “wetting” of the Al GB by Si. Complete “wetting” of the
Al GB by Si has been realized at 140°C (right). Reprinted with
permission from Ref. [36], Copyright 2011, John Wiley and
Sons. (C) In situ heating HRTEM observation (cross-sectional
view) of the nucleation of c-Si at a high-angle Al GB at 150°C.
Reprinted with permission from Ref. [36], Copyright 2011,
John Wiley and Sons. (D) In situ valence energy-filtered TEM
observation (cross-sectional view) of a 150 nm a-Si/100 nm
c-Al bilayer upon heating at 240°C, showing the growth of a
c-Si nucleus in the Al bottom layer and, at the same time, the
development of a mushroom-shaped Al “plume” of cloud-like
morphology in the a-Si top layer. Upon heating at 280°C, Si
and Al sublayers have practically exchanged their locations:
layer exchange has occurred. Reprinted with permission
from Ref. [37], Copyright 2012, American Chemical Society.
Abbreviation: GB, grain boundary.
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Figure 1.2  (A) Schematic illustration of the mechanism of Ni-induced
crystallization of a-Si in c-Ni/a-Si bilayers. Upon heating,
initially Ni reacts with a-Si to form NiSi, at the c-Ni/a-Si
interface. c-Si then nucleates at the interface between NiSi, and
a-Si. Continued crystallization of c-Si is realized by migration
of NiSi; into/within the a-Si film, leaving c-Si in its wake. (B)
TEM bright-field image of a migrating NiSi, precipitate with
grown needle-like c-Si in its wake. Reprinted with permission
from Ref. [59], Copyright 2001, Elsevier. (C) TEM images of
a Ni-induced crystallized a-Si film at 400°C for 10 minutes
(left) and 30 minutes (right). Continued crystallization of
a-Si has occurred by the repeated NiSij-induced growth of
needle-like Si crystallites in the initial a-Si film. Reprinted with
permission from Ref. [59], Copyright 2001, Elsevier. (D) Pd
(4 nm layer thickness)-induced lateral crystallization of a-Si
film (150 nm layer thickness) upon annealing at 500°C for 5
hours (optical micrograph). Reprinted with permission from
Ref. [18], Copyright 1995, AIP Publishing LLC. (E) Ni (5 nm
layer thickness)-induced lateral crystallization of a-Si film
(100 nm layer thickness) upon annealing at 500°C for 7 hours
(left) and 21 hours (right) (orientation imaging microscopy
image). Reprinted with permission from Ref. [20], Copyright
1998, AIP Publishing LLC.

real-time in situ analytic TEM techniques have been applied to
disclose the detailed atomic-scale mechanisms of MIC and MILE,
which were neither observed nor even recognized before [36, 37].
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Research has been directed to (potential) applications of MIC, in
particular since 2000. For example, thin-film c-Si solar cells with an
efficiency of higher than 8% have been developed on the basis of an
Al-induced crystallization approach [38] (for details of application
of the MIC process in thin-film photovoltaic technologies, see
Chapter 5). Furthermore, advanced display devices with exceptional
performance have been developed by utilizing the low-temperature
MILC process of a-Si (for details of application of the MILC process
in advanced flat-panel displays, see Chapter 6). Very recently, MIC
has also been applied for the production of Blu-ray data storage
devices. In this case, because of the low crystallization temperature
in metal/a-Si (or a-Ge) bilayer systems, the metal/a-Si (a-Ge) bilayer
crystallizes upon low-power (i.e., low-cost) laser irradiation and
can therefore serve as an excellent type of data storage medium
(for details of application of the MIC process in Blu-ray data storage
devices, see Chapter 7).

1.2 Experimental Methods for Investigating the
Metal-Induced Crystallization Process

Many different experimental techniques have been employed
to investigate the MIC process. Because of different sensitivities
(to crystallization) of these techniques, the reported crystallization
temperature(s) as determined by different techniques can be (even
very) different for the same metal/amorphous semiconductor
system (see Tables 1.1 and 1.2). The key features of major techniques
used for MIC investigations are briefly summarized in the following
sections.

1.2.1 X-Ray Diffraction

X-ray diffraction (XRD) is one the most powerful techniques for
investigating the occurrence and kinetics of a phase transformation
process, such as crystallization (see Chapter 11 in Ref. [39]). Crucial
information on the (initial) nucleation and (subsequent) growth of
a certain crystalline semiconductor phase can be extracted from the
emergenceand increase of theintensitiesof correspondingdiffraction
maxima. This method can be applied both to bulk specimens and to



