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Preface

The IAS /Park City Mathematics Institute (PCMI) was founded in 1991 as part
of the “Regional Geometry Institute” initiative of the National Science Foundation.
In mid 1993 the program found an institutional home at the Institute for Advanced
Study (IAS) in Princeton, New Jersey.

The IAS/Park City Mathematics Institute encourages both research and ed-
ucation in mathematics and fosters interaction between the two. The three-week
summer institute offers programs for researchers and postdoctoral scholars, gradu-
ate students, undergraduate students, high school teachers, undergraduate faculty,
and researchers in mathematics education. One of PCMI’s main goals is to make
all of the participants aware of the total spectrum of activities that occur in math-
ematics education and research: we wish to involve professional mathematicians
in education and to bring modern concepts in mathematics to the attention of
educators. To that end the summer institute features general sessions designed
to encourage interaction among the various groups. In-year activities at the sites
around the country form an integral part of the High School Teachers Program.

Each summer a different topic is chosen as the focus of the Research Program
and Graduate Summer School. Activities in the Undergraduate Summer School
deal with this topic as well. Lecture notes from the Graduate Summer School are
being published each year in this series. The first fourteen volumes are:

e Volume 1: Geometry and Quantum Field Theory (1991)

e Volume 2: Nonlinear Partial Differential Equations in Differential Geom-
etry (1992)

Volume 3: Complex Algebraic Geometry (1993)

Volume 4: Gauge Theory and the Topology of Four-Manifolds (1994)
Volume 5: Hyperbolic Equations and Frequency Interactions (1995)
Volume 6: Probability Theory and Applications (1996)

Volume 7: Symplectic Geometry and Topology (1997)

Volume 8: Representation Theory of Lie Groups (1998)

Volume 9: Arithmetic Algebraic Geometry (1999)

Volume 10: Computational Complexity Theory (2000)

Volume 11: Quantumn Field Theory, Supersymmetry, and Enumerative
Geometry (2001)

Volume 12: Automorphic Forms and their Applications (2002)

e Volume 13: Geometric Combinatorics (2004)

e Volume 14: Mathematical Biology (2005)

Volumes are in preparation for subsequent years.

Some material from the Undergraduate Summer School is published as part of
the Student Mathematical Library series of the American Mathematical Society.
We hope to publish material from other parts of the IAS/PCMI in the future. This
will include material from the High School Teachers Program and publications
documenting the interactive activities which are a primary focus of the POMI. At
the summer institute late afternoons are devoted to seminars of common interest
to all participants. Many deal with current issues in education, while others treat

ix



x PREFACE

mathematical topics at a level which encourages broad participation. The PCMI
has also spawned interactions between universities and high schools at a local level.
We hope to share these activities with a wider audience in future volumes.

John C. Polking
Series Editor
October 2008
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Introduction

M. A. Lewis and J. Keener

Mathematical Biology is a rapidly growing field that defies definition. In sim-
plest terms it is the use of mathematics to study and understand problems of
biology. In fact, there is no area of mathematics that is precluded from use and no
area of biology that is beyond reach. Obviously, then, an introduction to Mathe-
matical Biology can only begin to scratch the surface of this field. However, if there
is a unifying theme to these lecture notes it is that the study of biology is the study
of how things change, that is, it is the study of dynamics. So in the introductory
lectures of Jim Keener and Mark Lewis, we are given a brief overview of dynamical
systems analysis that has been proven to be widely useful in the study of biology.

Chemical reactions, whether in the test tube or in the cell, are a natural place
to begin when modeling biological dynamics. Jim Keener builds up the tools and
theory of chemical reaction dynamics from first principles, and shows how bistabil-
ity, thresholds and excitability can arise from simple chemical reactions, and how
the resulting dynamics can give rise to biologically significant behavior, such as
switches, oscillations and quorum sensing,.

Spatial dynamics, whether in an ecosystem, a growing tumor, or in developing
tissue patterns, is an area central to mathematical biology. The mathematical
problems are challenging, as they involve both time and space components. Mark
Lewis and coauthors introduce the theory pattern formation and traveling waves
in biology using the so-called stream paradox of spatial ecology as a motivating
example. How do species persist in streams while being constantly washed down-
river by the current?

The lectures of the main speakers each emphasize a specific biological problem.
The lectures of Jim Cushing show how discrete dynamical systems have been used
to model the population dynamics of flour beetles; those of David Earn show how
the SARS epidemic can be studied using SIR models; Leon Glass uses topological
arguments to study the behavior of oscillatory biological dynamics; Helen Byrne
shows how populations of cancer cells can be modeled and studied; Paul Bressloff
describes the dynamics of neural systems;

Jim Cushing’s chapter applies nonlinear matrix models to the study of popu-
lation dynamics. Matrix population models have a long and distinguished history
in mathematical biology — their application to ecological systems goes back more
than half a century and they are widely applied by biologists to understand dy-
namics of structured populations. However, Cushing’s work brings new excitement
to this well-established subject. In his study of insect populations he includes spe-
cific nonlinearities that describe overcompensation and cannibalism in structured
populations. These give rise to very complex dynamics, which are influenced by

(©2009 American Mathematical Society



4 M. A. LEWIS AND J. KEENER, INTRODUCTION

chaotic attractors. Part of Cushing’s chapter focuses on understanding the bifur-
cation structure and qualitative dynamics using mathematical tools. Another part
focuses on analyzing data from experimental case studies from real laboratory pop-
ulations of flour beetles, and on relating these data to the nonlinear dynamical
systems using maximum likelihood methods. This coupling of complex nonlinear
dynamics and large biological data sets brings a level of biological realism that
moves the mathematics from “understanding the theory” to “testing the hypothe-
ses.”

David Earn’s chapter introduces the reader to the science and art of model-
ing diseases using dynamical systems. He introduces the dynamical systems from
a refreshingly data-oriented perspective. Starting with time series data for real
epidemics, Earn asks how we can tease out patterns for infection levels, using sta-
tistics. Which diseases persist? Which oscillate? Are there characteristic scales
for outbreaks? He then introduces mechanistic models for disease, based on ordi-
nary differential equations, which can connect the dynamical outbreak behaviors
to underlying mechanisms. The mechanisms, in turn are depicted as terms in the
equations. He adds increasing layers of realism to the models, with the inclusion
of stochasticity and environmental forcing, and shows that these factors can have
a major influence on observed dynamics.

Leon Glass explores topological approaches to biological dynamics. His ap-
proach exploits the topologies common to many physiological systems: a heart cell
beats, forming a time-periodic signal; travel far enough around a developing limb
bud and you may return to the same spot on the limb bud; a wave of excitation on a
spherical surface, such as a whole heart, can travel over the entire surface, returning
to the spot where it started; and a network of genes can repeatedly cycle through
a variety of different states. What happens when the heart cell is over-stimulated,
when a right limb bud is transplanted onto a left stump, when dead region on the
excitable surface of the heart is formed, or when the gene network is perturbed or
damaged? The result, in a very general sense, is a perturbation of the dynamical
system, described on a particular topology (such as a circle or a sphere). Glass
develops mathematical tools for studying fixed points, limit cycles, entrainment,
and phase resetting in a topological setting, and applies these to understanding the
nonlinear dynamical properties to a broad spectrum of biological systems.

Our understanding of cancer tumor growth is rapidly expanding through the
application of mathematics and computer modeling to study tumor dynamics. He-
len Byrne weaves a framework of dynamical systems models for the various stages
of cancer solid tumor dynamics. These stages progress from avascular (little blood
supply) through angiogenesis (formation of new blood vessels) to vascular (supplied
with blood). Progression from avascular to vascular mirrors an increase in the size
and seriousness of tumors, and a detailed understanding of the processes governing
the progression may eventually be key to medical treatments, including optimal ra-
diotherapy and chemotherapy. Byrne’s dynamical models address the growth, size,
shape and the complex movement patterns of tumors and their cells. A mixture
of analysis and numerical simulation is used to understand the processes from first
principles.

The brain and its neurons remains a source of fascination for many modelers.
How can we understand the overwhelming complexity exhibited by the brain, based
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on the chemical and cellular processes that describe individual brain cells, or neu-
rons? Paul Bressloff’s chapter takes on this daunting challenge, starting at the level
of a single neuron, and building up to neural pattern formation in the visual cortex
of the brain. One of the mathematical challenges lies in the nonlocal nature of
interactions between nerves: excitation or inhibition can occur over distant spatial
scales as one part of the brain signals to another. The resulting models, coupling
nonlinear dynamics to nonlocal interactions, provide insight as to the form and
function of the brain.

While the first two chapters are designed as introductory material, each of
the remaining chapters of the book stand alone, as snapshots of in-depth research
within sub-areas of mathematical biology. In this respect, the volume sacrifices
breadth for depth; many other important sub-areas, ranging from cell structure
to evolution to immunology are not covered. While these could fill several more
volumes, we trust that the excitement and richness of research topics shown here
will encourage the reader to explore these other areas on their own.
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