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Preface

This text is concerned with those aspects of mathematics that are
necessary for first-degree students of chemistry. It is written from the
point of view that an element of mathematical rigour is essential for a
proper appreciation of the scope and limitations of mathematical
methods, and that the connection between physical principles and their
mathematical formulation requires at least as much study as the
mathematical principles themselves. It is written with chemistry
students particularly in mind because that subject provides a point of
view that differs in some respects from that of students of other
scientific disciplines. Chemists in particular need insight into three-
dimensional geometry and an appreciation of problems involving
many variables. It is also a subject that draws particular benefit from
having available two rigorous disciplines, those of mathematics and of
thermodynamics. The benefit of rigour is that it provides a degree of
certainty which is valuable in a subject of such complexity as is
provided by the behaviour of real chemical systems. As an experimen-
tal science, we attempt in chemistry to understand and to predict
behaviour by combining precise experimental measurement with such
rigorous theory as may be at the time available; these seldom provide a
complete picture but do enable areas of uncertainty to be identified.
Mathematical rigour has been provided for us by generations of
professional mathematicians, who continue to give support and advice
both in the application of established techniques and in the develop-
ment of new approaches. Experimental scientists have added to this a
rigour of a different kind, which is based upon a small number of
premises, or axioms, deduced from seemingly disconnected experimen-
tal observations. These provide the experimental laws of thermody-
namics and quantum theory whose justification lies in the absence of
disagreement with experiment. When these are expressed in mathema-
tical terms we can add mathematical rigour to produce theoretical
structures in which only the basic premises, often corresponding to
a simplified physical model, leave room for uncertainty. These
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considerations are reflected in this text by frequent reference to physical
principles, by the inclusion of a number of mathematical proofs and by
the inclusion of a discussion of the treatment of experimental data.

It is assumed that the reader has previous mathematical knowledge
extending to the elementary applications of calculus. The subject
matter is developed during each chapter, so that an initial reading of
only the earlier sections in each chapter is possible. The later sections
contain brief outlines of the principles and scope of more advanced
techniques and are intended to point the way to more specialized texts.

The examples are, in the main, given with their solutions; this is in
order that the text may be used as a reference source, for which purpose
worked examples are more valuable than exercises. Readers are
strongly recommended to attempt their own solutions to these
examples before consulting the one that is given.

A proper acknowledgement of the many sources from which the
author has drawn cannot be justly be made for a text in which the
material was largely developed during the last two- or three-hundred
years. It is a subject on which many admirable texts have been written,
the only justification for adding to their number being changes in
emphasis.
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CHAPTER 1

Algebraic and geometrical
methods

1.1 Natural numbers

Quantitative measurements in science are usually made in terms of
appropriate, but arbitrary, units (Section 1.2), so that the numerical
values obtained depend on the size of the units and are not significant in
themselves. Only when there is a natural unit, such as the gas constant
R, do numerical values assume absolute significance; for example, the
heat capacity at constant volume of an ideal monatomic gas at a high
enough temperature is 3R/2, where the number 3 corresponds to the
three degrees of freedom of the particles.

There are some pure numbers, however, that arise naturally, the ones
most commonly met in science being 7 and e. These can be regarded as
the mathematical equivalent of natural units and occur so often in
scientific formulae and equations that we consider how they originate.

Our first natural number, 7, could be defined as the ratio of
circumference to diameter for a circle. This ratio is a pure number that
is independent of the size of the circle, and it is also used as the natural
measure of angle. The definition of angle is

angle = (length of arc)/radius, (1.1a)

and for a given angle, this has a numerical value that is independent of
any conventional scale of measurement. The circumference of a
complete circle of radius r being 2nr, the angle corresponding to a full
rotation is 2nr/r = 2m natural units of angle, this unit bging called the
radian. We also have the conventional definition of such a full rotation
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as 360 degrees (360°), so that
7 radian = 180°.

The definition of angle in two dimensions as (arc length)/radius can
be extended into three dimensions; if we take a conical segment from a
sphere we can define a three-dimensional solid angle as

solid angle = (area of segment of spherical surface)/(radius)’.

(1.1b)
For a complete sphere of surface area 4nr?,

complete solid angle = 4nr?/r? = 4,

and since this expression does not contain r it is also a pure number that
is independent of the size of the sphere. The unit of solid angle is called a
steradian. It is a useful geometrical concept that (area)/(radius)’ is
constant for a given solid angle, and this is used in Section 5.7.

Our second natural number, e, arises in a different way. It is useful to
divide the mathematical methods used in science into two categories,
geometrical methods and analytical methods. The above definition of n
is geometrical and belongs in the field of diagrams and models. The
second category is algebraic and numerical, and does not depend on
our ability to construct models and diagrams. Analytical methods are
developed by strictly logical deductions from first principles, called
axioms. This is generally the more powerful of the two mathematical
methods and, as such, is the one preferred by mathematicians and is
often the one needed to solve the more difficult problems. Geometrical
methods, on the other hand, often seem simpler but are sometimes
deceptively so. The wise rule is to use geometrical methods with care
and to defer to analytical methods when in doubt.

This division into geometrical methods and analytical methods is
arbitrary since they are parts of the same whole and a combination of
the two is frequently used in practice. Sometimes the connection
between the two methods is not obvious, an example being provided by
the trigonometric functions sin 6, cos 6, tan 0, . . .. The geometrical
definition of sin 6 is

opposite side

sinf) = in a right-angled triangle, (1:2)

hypotenuse

whereas the analytical definition is
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We can see that these two definitions are the same in a particular case
by taking the angle 6 to be, say, 90° = n/2 radian. Then sin 6 = 1 by the
geometrical definition, and if we put § = 7/2 = 1.5708 into the series
(1.3)it is easily shown that successive terms become rapidly smaller and
smaller, and that the sum tends towards a limit of 1.000.

The fact that the two definitions of sin 6 are always the same can be
proved only by means of extensive analytical argument. One way is to
use the definition of cos 6 as the series

2 4 6
cosB=1—%+%!——%!+.... (1.4)
This is then the derivative (Chapter 2) of sin 6. The derivative is used to
define the slope of the tangent to a curve, and the angle between two
straight lines can be obtained as the inverse of the cosine series. In
this way, geometry can be developed by the analytical approach
leading eventually to showing that (1.2) and (1.3) are equivalent to

each other.
As mentioned above, our second natural number, e, belongs in

analytical methods. It is defined by the series

2 x3

X
so that when x =1,
1 1
=14+14+—4+—+...=271828..... (1.6)

21 3

This arises naturally in science because e, and only e*, gives exactly the
same quantity when it is differentiated (Chapter 2). This corresponds to
the quite common situation where the rate of change of a quantity 1s
proportional to the quantity itself, as in first-order reaction kinetics.
More fundamentally, exponential relations arise as a result of the
simple probability that determines the Boltzmann distribution which
underlies many physical phenomena (Section 2.8).

Putting x = 0 in (1.5) gives e® = 1. This is a particular case of the
general rule that any quantity raised to the power of zero is unity, which
follows from the laws of indices:

aa = a*"Y and a *=1/a%
so that
a* ™y = a!/ay,
and when x = ),
a® =1
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1.2 Units and dimensional analysis

The units used in the SI system are given in the appendix together with
numerical values of the fundamental physical constants and conversion
factors. Notice that the symbols for units are written only in the
singular, or they cannot be cleanly cancelled and we would also have
absurdities such as 0.99 g but 1.01 gms. This need not conflict with
colloquial usage; we may speak of a temperature difference of
10 kelvins but this is written as 10 K.

Algebraic symbols are used to denote physical quantities, such as p
for pressure; the symbol denotes the quantity, not the units. A
particular value of the quantity is then the product of a pure number
and its units, and this product follows the normal rules of algebra. Thus
2 atm is the product of the pure number 2 and the unit atm, so that if
p = 2atm we have p/atm = 2, or a quantity divided by its units isa pure
number. An important particular case is when taking logarithms; since
the definition of a logarithm only applies to pure numbers, the value of
any quantity must first be divided by its units, such as In(p/atm). The
value obtained will then depend on the units being used since, for

ample,
SRS In (p/atm) = In(p/101.325 kPa)

= In(p/kPa) — In(101.325)
= In(p/kPa) — 4.618.

The dimensions of a physical quantity are defined as the appropriate
combination of powers of the fundamentals mass (M), length (L) and
time (T); thus velocity has dimensions LT~ ! and force (mass
x acceleration) has dimensions MLT ~ 2. The dimensions are precisely
analogous to the SI units of kilogram, metre and second, so that force
has units of kg m s~ .

Dimensional analysis is a method of checking and predicting
relations between physical quantities based simply on the principle that
the dimensions must balance in any equation. A standard example of
the technique is to predict the form for Stokes’s law for the drag on a

sphere moving in a viscous fluid. Since
force = mass x acceleration
it has dimensions MLT ™ 2. The viscosity n of a fluid is defined by

force per unit area

velocity gradient

force  distance

X -
area  velocity
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with dimensions

]Y[Ff f/ZXkXZ'ML T

We then assume that the drag (resisting force) on the sphere will depend
on the size of the sphere (radius a), its velocity (v) and on the viscosity of
the fluid. Dependence on temperature will be taken care of through
change in the viscosity of the fluid. The relation that is assumed is
written as

force = ka*vPn’

and dimensional analysis will enable us to find the numbers «, § and 7.
The assumed relation is rewritten in terms of the dimensions (or units)
of the quantities, thus

MLT 2 = L*LT (ML 'T!).

Finally, we equate powers of each of the primary dimensions M, L and
T to obtain

for M, y=1,
for L, a+pf—y=1,
for T, —B—y= -2,

so that « = f =y = 1 and the required equation is
force = kanv.

Physical, rather than dimensional, arguments are needed to show that
the proportionality constant k is 6.

The same principle can be applied when using the practical SI units
of kilogram (kg), metre (m) and second (s), so that in any equation
connecting physical variables the units must cancel on the two sides of
the equation. This has two valuable and practical uses: unless the units
cancel, the equation being used is wrong; and when we wish to change
to other units, we can do so by a simple algebraic method called
quantity calculus. The latter is based on the principle that multipli-
cation by unity leaves any quantity unchanged, and we can construct
‘unity brackets’ by writing, as a fraction, the new units over the old
using appropriate conversion factors. As a simple example, if we write
(1 week/7 days) this has the value unity. To convert, say, 42 days into
weeks we multiply by the appropriate unity bracket and cancel the
units:

1 week

42 days = 42 -days x 7 = 6 weeks.
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Example 1.1
The gas constant R in the equation p¥’ = nRT has the units needed for
the equation
pV
R=—
nT

to have the same units on both sides. Thus if the pressure p is in
atmospheres (atm), volume ¥ in dm? (also called litres), and tempera-
ture T in kelvins (K), and amount of substance, n in moles (mol)

R = 0.08205 litreatmmol "' K~ 1.

If we wish to use SI units instead, we make use of unity brackets based

on the conversion factors
1 atm = 101.325kPa,
1J =1Nm,
1dm?® = 10"*m?,
1Pa =1Nm™?

so that, using four significant figures,

R —
0.082057 dm> atnt 5 10~ 3ar® y 101.325 x 103 Pa 5 X 5 J
mol K ant atm Pap? = Nnt
=8.3144Jmol 'K L

Example 1.2
Show that Planck’s constant has the dimensions of momentum
x length.
From the appendix,
h=6.624x103*7Js.

The units of momentum x length are those of mass x velocity x length.
The unity brackets are based on the conversion factors

1J=1Nm,
IN=1kgms 2

so that the units of momentum x length are
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Example 1.3

Suppose that we are given that the spacing between the lines in the
microwave spectrum of HCl is 20.7 cm ~ * and that we need to calculate
the moment of inertia I, but can remember only that the spacing is 2B
where B is either h?/8m21 or h/8n?Ic. This difficulty can be resolved by
adopting the strongly recommended rule that we substitute into
formulae not just numerical values but the units as well.

We have that either
h? cm h cm
I=—x— or

I=r m—
gn2 " 10.35 gnic " 1035’
where h = 6.626 x 107 3*Js and ¢ = 2.998 x 108 ms ™!, so that either

_ (6.626x 1073 2¥sZem  N'm? kg m? - m
X
8712 x 10.35 F X N 2cm

giving units of kg?m3s~2, or

_ 6.626x 10 3 ¥gcems me y kgm y af
T 8mEx2998 x 108 m x 1035 & Ns¥ T 102cm

=270 x10"*"kgm?.

The second expression gives the correct units for the moment of inertia.

Example 1.4
Show that a diver at a depth of 66 ft of sea water (density 1.03 gem ™ ?)is
under a pressure of about 3 atm.

The pressure exerted by a column of liquid of density p and height h
is given by

kg Nt 12
10° g " ke ™
y 2.54em y 10* cat? y Pa p?

il s X
— 2.033 x 10° Pa = 203.3 kPa.

B 103g 9.81 i
p—pgh—cm,, 7 X 66 £t x

Thus the water exerts a pressure of about 2 x 101 kPa (2 atm), and so
the total pressure on the diver is about 3 atm.



