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STRENGTH OF MATERIALS



PREFACE

This book is intended to cover the basic Strength of Materials of the first
two years of an engineering degree or diploma course; it does not attempt
to deal with the more specialized topics which usually comprise the final
year of such courses.

The work has been confined to the mathematical aspect of the subject
and no descriptive matter relating to design or materials testing has been
included.

Each chapter consists of a concise but thorough statement of the theory,
followed by a number of worked examples in which the theory is amplified
and extended. A large number of unworked examples, with answers, are
also included.

The majority of examples have been taken, with permission, from
examination papers set by the University of London and the Institutions
of Mechanical and Civil Engineers; these have been designated U.Lond.,
LMech.E. and I.C.E. respectively. All questions were originally set in
Imperial units; they have now been converted to equivalent S.1. units but
are otherwise unchanged.

Over 500 questions have been solved and some errors in solutions are
inevitable. Notification of these would be gratefully acknowledged.

R. C. STEPHENS



NOTE ON S.I. UNITS

The fundamental units in the Systéme International d’Unités are the metre,
kilogramme and second, with the newton as the derived unit. Where mixed
quantities are involved in a problem, the solution has generally been
worked throughout in the basic units, e.g. for a given stress of 200 MN/m?2,
the figure 200 X 10®° N/m? has been substituted and for a density of
7-8 Mg/m3, the figure 7-8 X 103 kg/m? has been substituted.

In many examples of stress analysis or thick cylinders, however, it has
been possible to work throughout in MN/m? (or the identical unit N/mm?2)
and in the calculation of second moment of area of beam sections, etc,
preliminary calculations have often been made in mm where this unit has
been more appropriate.

The em is not approved in S.I. units and has therefore not been used.

vi
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CHAPTER 1

SIMPLE STRESS AND STRAIN

1.1 Introduction. When a load is applied to a member of a machine or
structure, the material distorts. The stress intensity (usually abbreviated to
stress) is the load transmitted per unit area of cross-section and the strain
is a measure of the resulting distortion.

Assuming that the load is insufficient to cause rupture, it is resisted by
the force of attraction between the molecules of the material and the
deformation is the result of the slight re-orientation of the molecules.

If the material returns to its former shape when the load is removed, it
is said to be elastic; if the strain is permanent, it is said to be plastic. Most
engineering materials are elastic up to a certain stress (referred to as the
elastic limat), after which they are partly elastic and partly plastic. The
transition is not always abrupt, but for the purposes of calculation it is
usually assumed to be so, an assumption which is reasonably justified for
common mild steel.

In the simple theory of Strength of Materials, it is assumed that the
material is isotropic (i.e. displays the same properties in all directions) and
that it is equally rigid in tension and compression. It is further assumed
that the stress is uniformly distributed over the area resisting the load;
this is approximately true, except in the near vicinity of the point of
application of the load or a sudden change of section (St Venant’s Prin-
ciple).

1.2 Tensile and compressive stress and strain. If a piece of material
of cross-sectional area a is subjected to equal and opposite forces P, either
tensile, as in Fig. 1.1(a) or compressive, as in Fig. 1.1(b), then

force
stress = -
cross-sectional area
. P
Le. o= . . ; . . . (1.1)
a

If the original length of the bar is / and under the effect of the force P it
extends or compresses a distance z, then

change in length

strain = ==
original length

i.e. €

~| 8

(1.2)
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The deformed shapes of the bars are as shown dotted in Fig. 1.2; the
strain in directions perpendicular to that of the load is proportional to that
in the direction of the load and is of the opposite sign.

The ratio ol L, is called Poisson’s Ratio and is denoted by ».

axial strain
Thus if the axial strain is ¢, the lateral strain is —ve.

P

| pp——

e ——

[C— -

I Ip T i

(a) (b) (a) (b)

Fie. 1.1 Fia. 1.2

1.3 Shear stress and strain. If a piece of material of cross-sectional
area a is subjected to equal and opposite forces P which produce a state of
shear, as shown in Fig. 1.3, then
force

cross-sectional area

i.e. T= i . . . . . . (1.3)

a

If the deformation in the direction of P is z and the perpendicular dis-
tance between the applied forces is /, then

shear stress =

y deformation
shear strain = ———
couple arm
ie. ¢=§ (1.4)

¢ is the angular displacement in radians, since ; is very small.

T
A —_— B
pP—X
| N
| ,,‘bL\ T b i
l P a_____] /
1 !
! /
1 /P D +—— C

Fig. 1.3 Fic. 14
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When a shear stress 7 is applied to the faces AB and CD of an element of
the material, Fig. 1.4, a clockwise couple (v X AB X ¢) x BCis applied to
the element, ¢ being the thickness of the material. Since it does not rotate,
however, an equal anticlockwise couple must be applied by means of shear
stresses induced on faces AD and BC.

If the magnitude of these stresses is 7/, then for equilibrium,

(X ABxt)x BC=(z" X BC x ) X AB
SLT=7

Thus a shear stress in one plane is always accompanied by an equal shear
stress (called the complementary shear stress) in the perpendicular plane.

1.4 Hooke’s Law. Hooke’s Law states that when a load is applied to
an elastic material, the deformation is directly proportional to the load
producing it. Since the stress is proportional to the load and the strain is
proportional to the deformation, it follows that the stress is proportional to
the strain, i.e. the ratio stress/strain is a constant for any given material.

For tensile or compressive stresses, this constant is known as the Modulus
of Elasticity (or Young’s Modulus) and is denoted by E.

Thus E=-=""=— . : : . (1.5)

For shear stress, this constant is known as the Modulus of Rigidity and
is denoted by G.

Thus G=-="L-—=— . . . . (1.6)

1.5 Factor of safety. The maximum stress used in the design of a
machine or structure is considerably less than the ultimate stress (i.e. the
stress at failure), to allow for possible overloading, non-uniformity of stress
distribution, shock loading, faults in material and workmanship, corrosion,
wear, etc.

breaking stress

The ratio is called the factor of safety.

maximum design stress

Instead of basing this factor on the stress at failure, it is sometimes based

on the stress at the yield point (where the material suddenly becomes

plastic) or, for materials which have no well-defined yield point, on the

stress at which the extension is a certain percentage (e.g. 0-1 per cent) of
the original length.
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1.6 Stresses in thin cylindrical shells. When a thin cylinder is sub-
jected to internal pressure, stresses are induced on the longitudinal section
XX, Fig. 1.5, due to the force tending to separate the top and bottom
halves, and on the circumferential section YY due to the force tending to
separate the right- and left-hand ends of the cylinder.

The stress on the longitudinal section is termed the circumferential stress
and that on the circumferential section is termed the longitudinal stress;
the type of stress is determined by the direction of the arrows.

In determining the stresses induced, it is assumed that the thickness is
small in comparison with the diameter so that the stress on a cross-section
may be taken as uniform* and also that the ends give no support to the
sides, an assumption which would be appropriate to a long cylinder such
as a pipe.

Let the internal diameter and length be d and I respectively, the thickness
of metal be ¢ and the internal pressure be p.

Fic. 1.5 Fig. 1.6

Circumferential stress. The force tending to separate the top and
bottom halves is the pressure multiplied by the projected area in a direction
perpendicular to the diametral plane,} Fig. 1.6,

Le. P, = pdl

This is resisted by the stress acting on the longitudinal section, XX,

. pdl  pd

ie. == : ; : ;
AT A )

If the cylinder is made up from riveted plates and the efficiency of the
longitudinal joints is #, then the average stress in the joint is given by

_p
o; o, . : . . (1.8

* See Chapter 14.
T The radial force on an element subtending an angle

E ‘ d
do, Fig. 1.7, is p x 3 dé x l. The vertical component of

2 . pdl .
this force is p—;— df.sin @ so that the total force normal to

Tt
XX is j p-éﬂ sin 0 d0 = pdl.
0
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Longitudinal stress. The force tending to separate the right- and left-
hand halves is the pressure multiplied by the area of one end, Fig. 1.8,

ie. P=pxZg
4
This is resisted by the stress acting on the circumferential section, YY,
7
X = d2
ie. o= 1)—4 = P—d . (1.9)
7rdt 4
lY
—_— Pl.
d y Qe § (.
tf Iy

Fig. 1.8 Fig. 1.9

If the cylinder is made up from riveted plates and the efficiency of the
circumferential joints is 7, then the average stress in the joint is given by

_pd 1.10
(] 4”]0 . . . . . ( . )

It is evident from equations (1.8) and (1.10) that the efficiency of the
circumferential joints need only be half that of the longitudinal joints.

1.7 Stress in thin spherical shells. Let the internal diameter be d,
the thickness of metal be ¢ and the internal pressure be p, Fig. 1.9. Then the
force tending to separate the two halves on a section XX is the pressure
multiplied by the projected area in the direction perpendicular to XX,

: 7w
.e. P=px—_d?
i.e PX7
This is resisted by the stress acting on the section XX,
1

P X = d?
. 4 pd
.e. = — = — . . . . 1.11
e ’ sedt 4 (-1

If the shell is made up from riveted plates and the efficiency of the joints
18 7, then

_pd
o . (112)
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1.8 Stress in thin rotating rims. Let a thin rim (one in which the
radial depth is small in comparison with the mean radius) of cross-sectional
area a, mean radius » and density m rotate at a tangential speed v, Fig.
1.10. Then the centrifugal force, ¥, on an element subtending an angle

dob is

»2
m X a X rdf —
r

This is resisted by the radial components of the forces on the ends of the
element. If the stress induced is o, then

mavzd0=2><aa><§29

from which o= mv® . . . . . (1.13)

Fic. 1.10 Frc. 1.11

Alternatively, the centre of gravity of the half of the rim above the
diametral plane XX, Fig. 1.11, is at a distance % from XX. The centrifugal
7

force on this part is then resisted by the stress ¢ acting on the section XX,

. 2 2
i.e. mX a X arX w:X —=20a
A
from which o = mwr? = m?

1.9 Stresses in composite bars. A composite bar is a load-resisting
member which is made up of two different materials.

Let the cross-sectional areas of the two materials be a; and a,, the
moduli of elasticity be E; and E, and the coefficients of expansion be «;

and o,.

Stresses due to external load. If the ends through which the load is
applied are rigid, Fig. 1.12, the change in length of each part is the same,
i.e. T =T,

ie. ah_oh 114
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Also the sum of the loads carried by each part is equal to the applied load,
ie. P, + P,=

or 0.0, + 00, =P . : . . (1.15)
0, and o, can then be obtained from equations (1.14) and (1.15).

~ [PY-"214

—

><|J'<

Lot

&K

1
lp X!]:Yr-\t\
N\

Fia. 1.13

Stresses due to change in temperature. Let XX, Fig. 1.13, be the
initial level of the top of the composite bar and let YY be its final level after
a temperature rise ¢. If both parts were free to expand, the extension of

- material (1) would be ;¢ and that of material (2) would be Zyot; if, how-
ever, the two materials are rigidly connected at the top, material (1) is
forced to extend a distance z, and material (2) is forced to compress a
distance #,. It is only these forced changes in length, z, and z,, which pro-
duce stresses in the materials.

From Fig. 1.13, it will be seen that

%y + Ty = Lot — Loyt

0'1l1 O'zlz

loot, — ¢ . . . (116
El Ez = (loy — hoy) (1.16)
Also, since no external force is applied to the bar,
tensile force in material (1) = compressive force in material (2),

ie.

ie. 010; = 0,0y . . . . . (1.17)
0, and o, can then be obtained from equations (1.16) and (1.17).
If the bar is subjected to an external load P, Fig. 1.14,

as well as to a temperature rise ¢, then, from the 1P
equilibrium of the end plate,

P+ P =P, P D
or 0,0, — Ga, =P . . . (1.18) ) Q7%

assuming P to be compressive and o, > «;. Fie. 1.14



