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1 Introduction

1.1 Dimensionality

Dimensionality is an intellectually very appealing concept and speaking of a di-
mensionality other than three will surely attract some attention. Some years ago it
was fashionable to admire physicists who apparently could "think in four dimen-
sions” in striking contrast to Marcuse's "One-Dimensionai Man" [1]. Physicists

HYSICISTS .
RE ;smuse Tuey THINK

w0 4 DIMENSIONS

Figure 1-1: Siumuitaneously with Herbert Marcuse's book "One-Dimensional Man" [1],
which widely influenced the youth movement of the 1960s, W.A. Little's
paper on "Possibility of Synthesizing an Organic Superconductor” [2] was
published, motivating many physicists and chemists to investigate low-dimen-
sional solids.

would then respond with the understatement: "We only think in two dimensions,
one of which is always time. The other dimension is the quantity we are interested
m, which changes with time. After all, we have to publish our results as two-
dimensional figures in journals. Why should we think of something we cannot
publish?" (Figure 1-1).



2 One-Dimensional Metals

This fictitious dialogue implies more than just sophisticated plavs on words. If
physics 1s what physicists do. then in most parts of physics there i1s a profound
difference between the dimension of time and other dimensions, and there is also a
logical basis for this difference [3]. In general, the quantity which changes with
ume and which "physicists are interested in" i1s one propertv of an object. The ob-
ject in question 1s imbedded in space. usually in the three-dimensional space of
our common-day experience. In addition, the object commonly has a certain
length. width and thickness and is therefore also three-dimensional. Objects may
be very flat such as flounders, saucers or oil films with greater length and width
than thickness. In this case thickness can be negligiblv small. Such objects can be
regarded as (approximatelv) two-dimensional. Similarly, eels and wires are (near-
lv) one-dimensional. In another example, the motion of an object is restricted to
two dimensions like that of a boat on the surface of the sea (hopefully) or to one
dimension like that of a train on 1ts track (again hopefully). According to our
evervdav experience one- and two-dimensional objects and one- and two-dimen-
sional motions actually seem more common than their three-dimensional counter-
parts. so low-dimensionality should not be spectacular. Perhaps that 1s the reason
for the introduction of non-integer ("fractal") dimensions [4]. Not much imagina-
ton 1s necessary to assign a dimensionality between one and two to a network of
roads and streets — more than a highway and less than a plane. It 1s a well-known
peculianty that, for example. the coastline of Scotland has the fractal dimension
of 1.33 and the stars in the universe that of 1.23.

Solid-state phvsics treat solids both as objects and as the space in which objects
of phvsics exist: e. g., various silicon single crystals can be compared with each
other, or they can be considered as the space in which electrons or phonons move.
On one hand the lavers of a crystal, for instance, the ab-planes of graphite, can be
regarded as two-dimensional objects with certain interactions in-between them
that can be discussed. On the other hand they are the two-dimensional space in
which electrons move rather freelv. Similar considerations apply to the (quasi)
one-dimensional hvdrocarbon chains of conducting polyvmers.

1.2 Approaching One-Dimensionality from Outside and
from Inside

There are two approaches to low-dimensional or quasi low-dimensional systems
in solid-state physics: geometrical shaping as an "external" and increase of aniso-
tropy as an "internal” approach. For the external approach, let us take a wire and
draw it until it gets sufficiently thin to be one-dimensional (Figure 1-2). How thin
will 1t have to be? Certainly thin compared to a microscopic parameter, as for
example. the average free path of an electron or the Fermi wavelength.
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Figure 1-2: An "external approach” to one-dimensionality. A man tries to draw a wire
until it is thin enough to be regarded as one-dimensional. Metailic wires can
be made as thin as lum in diameter, but his is still far away from being one-
dimensional. (By lithographic processes semiconductor structures can be
made narrow enough to exhibit one-dimensional properties.)

[t will largely depend on the chosen measurement system which of the micro-
scopic parameters is the decisive one. Does the wire have to be drawn so exten-
sively to finally become a monatomic chain?

The Fermi wavelength becomes relevant when discussing the eigenstates of the
clectrons (we will leamn more about the Fermu wavelength in Chapter 3). If elec-
trons are confined in a box, quantum mechanics tells us that the electrons can
have only discrete values of kinetic energy. The energetic spacing of the eigen-
values depends on the dimensions of the box, the smaller the box the larger the
spacing (Figure 1-3):

AEy = h2/2m (n/L)? (1.1

where ALy is the spacing and L is the length of the box. The Fermi level is the
highest occupied state (at absolute zero). The wavelength of the clectrons at the
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4 One-Dimensional Metals

Fermi level 1s called the Fermi wavelength. If the size of the box 1s just the Fermi
wavelength, oniv the first eigenstate 1s occupied. If the energy difference to the
next level is much larger than the thermal energy (AL} >> £T), there are oniy
completelv occupied and completely empty levels and the system is an insulator.
A thin wire 1s a small box for electronic motion perpendicular to the wire axis. but
1t 1s a very large box for motions along the wire. Hence in two dimensions (radial-
lv) it represents an insulator. in one dimension (axially) it 1s a metal!

—_
c

m

Figure 1-3: Electrons in small and large boxes and energy spacing of the eigenstates.

If there are only very few electrons. the Fermi energy is small and the Fermi
wavelength fairly large. This is the case for semiconductors at very low doping
concentrations. Wires of such semiconductors are already one-dimensional if their
diameter is of the order of some 100 Angstroms.

Such thin wires can be fabricated from silicon or from gallium arsenide by
lithographic techniques and effects typical for one-dimensional electronic systems
have been observed experimentally [5]. Systems with high electron concentrations
have to be considerably thinner if they are to be one-dimensional. It turns out that
ror a concentration of one conducting electron per atom we really need a
monatomic chain!

Experiments on single monatomic chains are verv difficult, if not impossible. to
perform. Therefore, typically a bundie of chains rather than one individual chain
1s used. An example for such a bundle 1s the polvacetviene fiber, consisting of
some thousand polymer chains, closely packed with a typical interchain distance
of 3 to 4 Angstroms. Certainlv there will be some interaction between the chains:
however, in case of small interchain coupling, it can be assumed that just the net

sum of the individual chains determines the outcome of the experiment (Figure 1—
4).
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Another method of geometrical shaping employs surtaces or interfaces (Figure
1—3). The surface of a silicon single crystal is an excellent two-dimensional sys-
tem and there are various ways of confining charge carners to a layer near the
surtace. Actually, the physics of two-dimensional electron gases are an important

> //////’/
o=
-j/ d ... chain diameter
T~ D ... bundle diameter
Figure 1-4:  Expenments on individual chains are difficult to perform. But bundles of

chains are quite common, for example, tibers of polyacetylene.

part ot today's semiconductor physics [6] and most of the two-dimensional elec-
tron systems are confinements to surfaces or interfaces. The most fashionable ef-
fect in a two-dimensional electron gas is the quantized Hall effect or von Klitzing
etfect [7]. A one-dimensional surface, i.e., the edge of a crystal, is much more dif-
ficult to prepare and hardly of any practical use. If one argues, however, that ex-
posing a sample to a magnetic field reduces the effective dimensionality by one,
then a silicon surface in a magnetic field would be an excellent example of a one-
dimensional electronic svstem. In fact, reducing von Klitzing's sample to "edge
channels" is one way of explaining the von Klitzing effect [8].

The "internal approach" to one-dimensional solids comprises the gradual in-
crease of anisotropy. In crystalline solids the electrical conductivity is usually dif-
rerent in different crystallographic directions. If the anisotropy of the conductivity
is increased In such a way that the conductivity becomes very large in one direc-
tion and almost zero in the two perpendicular directions, a nearly one-dimensional
conductor will result. Of course, there is no simple physical way to increase the
anisotropy. However it is possible to look for sufficient anisotropy in alreadv
existing solids which could be regarded as (quasi) one-dimensional. Some aniso-
tropic solids are compiled in the next chapter of this book. How large should the
anisotropy be to meet one-dimensionality? A possible answer is: "Large enough to
lead to an open Fermi surface".

The Fermu surface is a surface of constant energy in "reciprocal space" or mo-
mentum space (Fermi surface and reciprocal space will be discussed in Chapter 3
in greater detail). For an isotropic solid, the Fermi surtace is spherical.
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If the electrical conductivity 1s large in one crystallographic direction and small
1n the other two. it becomes disk-like. The kinetic energy of the electrons can then
be written as E = p2/2m*. resembling the kinetic energy of a free particle
(p = momentum. m = mass), with the exception that the mass has been replaced
bv the effective mass m™. The effective mass indicates the ease with which an
electron can be moved by the electric field. If the electrons are easyv to move, the
conductivity 1s high. Easv motion 1s described by a small effective mass (small
inertia) and p must also be small to keep £ constant. If it 1s infinitelv difficult to

Figure 1-3: Crvstal surfaces are excellent two-dimensional systems. The man above tries
to improve the crystal face by mechanical polishing. The qualities achieved by
this method are not sufficient for surface science. Surface scientists cleave
their samples under ultrahigh vacuum conditions and use freshly cleaved sur-
faces for their experiments.

move an electron in a specific direction, the effective mass will become infinitely
large in this direction and the Fermi surface will be infinitely far away. However,
the extension of the Fermi surface 1s restricted: if the Fermi surface becomes too
large in any direction it will merge with the Fermu surface generated by the neigh-
boring chain ("next Brillouin zone". in proper solid-state physics terminology).
This merging "opens" the Fermi surface, similar to a soap bubble linking with an-
other bubble (Figure 1-6).



