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Preface

The study of dynamics is the study of how things change over time. Dis-
crete dynamics is the study of quantities that change at discrete points
in time, such as the size of a population from one year to the next, or the
change in the genetic make-up of a population from one generation to the
next. In general, we concurrently develop a model of some situation and
the mathematical theory necessary to analyze that model. As we develop
our mathematical theory, we will be able add more components to our
model.

The means for studying change is to find a relationship between what
is happening now and what will happen in the ‘near’ future; that is, cause
and effect. By analyzing this relationship, we can often predict what will
happen in the distant future. The distant future is sometimes a given
point in time, but more often is a limit as time goes to infinity. In doing
our analysis, we will be using many algebraic topics such as, factoring,
exponentials and logarithms, solving systems of equations, manipulating
imaginary numbers, and matrix algebra. We will also use topics from
calculus, such as derivatives and graphing techniques. The mathematical
theory generally builds on results developed earlier in this text.

After reading this text, you should be able apply discrete dynamics
to any field in which things change, which is most fields. The goal, then,
is to not only learn mathematics, but to get develop a differently way of
thinking about the world.

My own interest in this material is somewhat backwards. Several
years ago I became interested in a topic of current mathematical research,
chaos. One result of the theory of chaos is that there are certain situations
that change over time in an apparently random manner, and no amount
of analysis will enable us to make accurate predictions for more than a
short period of time. While this topic is extremely complicated, the ideas
behind it can be presented without a lot of mathematical background.
As I studied these chaotic models, I came to learn more and more about
situations in which we can make accurate long term predictions. In fact,
discrete dynamics has a long and useful history in many fields of study,
but has been largely ignored by mathematicians until the recent interest
in chaos.

My idea was to write a text that shows the many cases in which
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mathematics succeeds in its ability to make predictions. By understand-
ing these cases, we will have a greater appreciation of situations in which
math sometimes ‘fails’, that is, chaos. Thus, while chaos is discussed in
this text, it is introduced as a later step in the mathematical understand-
ing of the world.
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Notes to the teacher

While it is not necessary to have a calculator or computer to under-
stand this material, it would be helpful. With the aid of a calculator or
computer, students can study many complex and interesting applications
right from the start. Once a simple mathematical relationship is found,
students can easily run their own math experiments and make their own
hypotheses about what will happen. The verification of these hypotheses
will have to wait until the appropriate theoretical model is developed.

Some of the earlier material in the book can be carried out using a
computer spreadsheet. Experiments can be run on spreadsheets, such as
guessing a monthly payment on a loan that over a given period of time
makes the end amount owed equal to zero. Spreadsheets can also be used
to make graphs similar to some graphs in this text.

Chapters 1 and 2 are essential for the rest of the text (excluding Sec-
tion 1.6). Chapters 3, 5, and 6 could be studied in any order, but Chapter
4 depends on Chapter 3. Chapter 7 depends on Chapters 3, 4, and 6.



Preface | ix

Applications are for the most part independent of one another. Thus,
particular applications can be omitted.

The easiest method for compiling tests is to pick what you want as an
answer, then work backwards to get a question with that answer. I must
admit that it is difficult to develop good modeling questions.
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1.1 Introduction to discrete dynamical modeling

Example
1.1

Dynamical modeling is the art of modeling phenomena that change over
time. The normal procedure we use for creating a model is as follows:
first we identify a real world situation that we wish to study and make
assumptions about this situation. Second, we translate our assumptions
into a mathematical relationship. Third, we use our knowledge of math-
ematics to analyze or ‘solve’ this relationship. Fourth, we translate our
solution back into the real world situation to learn more about our original
model.

There are two warnings. First, the mathematical relationship is not
the solution. For example, suppose we wish to model a square that has an
area of 4 square meters. One mathematical translation is 2 = 4, where
z is the length of one side. Notice that this is not a solution. Analysis
gives the possible solutions, z = 2 and 2 = —2. The second warning is to
make sure that the solution makes sense in the situation being considered.
In the example of our square, z = —2 does not make sense. Translating
the solution z = 2 back to the real world, we learn something about our
square, that is, its sides are of length 2 meters.

Often, none of the mathematical solutions makes sense, so the original
assumptions must be reconsidered (or the mathematical calculations need
to be rechecked).

In this text, we will consider situations in which the state of the system
at one point in time depends on the state of the system at previous points
in time.

Suppose we start a savings account of 1000 dollars on January 1, 1983,
and that the bank pays 10 per cent interest on its accounts, compounded
annually. Then on January 1, 1984, we will have 1100 dollars in our
account (our original 1000 dollars plus 10 per cent of our 1000 dollars as
interest). Now the ‘interesting’ thing about this model is that on January
1, 1985, we do not have 1200 dollars, but to our satisfaction we have
1210 dollars in our account. This is the 1100 dollars we already have plus
(0.10)(1100) — our 10 per cent interest rate times our balance. Note that
(a) knowing what is true today (we have 1000 dollars in the bank) and (b)
having knowledge about the world that relates today to some day in the
future (1 year from today we will have 10 per cent more money), we can
predict how much money we will have at any time in the future (barring
some unknown factor such as taxes, changes in interest rates or a bank
failure).

Let’s now translate this situation into the language of mathematics.
This is not difficult as long as you remember the definitions and you
always write in complete sentences. We will let January 1, 1983, be time
0; January 1, 1984, will be time 1; January 1, 1985, will be time 2; etc.
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So January 1, 2001, will be time 2001 — 1983 = 18. All other days are
irrelevant, since the money in our account stays fixed until January 1 of
the next year. We now let A(0) be the amount (in dollars) that we have
in our account at time 0, that is, A(0) = 1000. Likewise A(1) = 1100 and
A(2) = 1210. Our goal will be to predict how much we will have in our
account at time n where n is some future year. For example, if n = 18
(year 2001), what is A(18)?
We are now able to write our savings account problem as

A(1) = A(0) + (0.1)A(0)

which is read as: the amount at time 1 is (or equals) the amount at time
0 plus interest on the amount at time 0 (10 per cent of A(0)). This can
be simplified to A(1) = (1.1)A(0). Likewise

A(2) = (1.1)A(1), A@3)=(L1)A®2), ..., A®18)=(1.1)A(17),

and so forth.

We need a shorthand expression for the above equations. Verbally, the
equations say that the amount in our account next year is the amount
in our account this year plus interest on the amount this year. Let this
year be year n. Then next year is year n + 1. The amount in the, bank
each of these years is denoted A(n) and A(n + 1), respectively. Thus the
statement above is read mathematically as

A(n+1) = A(n) + (0.1)A(n), forn=0,1,2,3,... . (1)

Note that equation (1) when read aloud in a complete sentence actually
reads the same as the boldface statement above. Note that this does not
solve our problem, but restates it mathematically. To solve our problem,
we need some method of finding the amount in our account at any time
in the future.

One method for finding a ‘solution’ would be direct computation. Sup-
pose we want to find A(18). Since A(0) = 1000, by substitution we get
that

A(1) = (1.1)A(0) = 1100.

Repeating this process, we get that
A(2) =1.1A(1) = (1.1)1100 = 1210, A(3) = (1.1)A(2) = 1331,

and so forth.
Before the days of computers, it would be tedious and time consuming
to compute A(18), but recursive tasks are what computers do best. Thus,
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after writing a simple program, we could compute A(100) or A(1000)
quickly. Many of the results in this text were done on a computer. The
programs are all easy to write in almost any computer language (and can
also be written on a programmable/graphics calculator). Spreadsheets are
also quite useful in performing recursive tasks. While you will not need
access to a computer/calculator to follow this material, if you do use one
you will have fun and learn a lot by computing answers to problems similar
to the ones stated. For example, you could compute A(1), A(2),... when
A(0) = 100 (or some other number of your choice).

In an effort to find a ‘better’ solution, that is, one that is easier to
work with, we make the substitutions

A(2) =1.1A(1) = 1.1(1.14(0)) = (1.1)24(0)

A(3) = 1.1A(2) = 1.1((1.1)24(0)) = (1.1)3A4(0),....
From this, it is not difficult to see that

A(k) = (1.1)*A(0), fork=1,2,.... (2)

Equation (2) is what we mean by a solution to our problem. We can use
this equation and a calculator to compute easily the amount we have in
our account at any future point in time.

The above example is indicative of the rest of this text, in the sense
that we will use our knowledge of today to make predictions about tomor-
row, then we will use our predictions about tomorrow to make predictions
about the day after that, and so forth. Using this simple iterative idea, we
will gain insight about the way the world operates. Particular examples
will be from population growth, genetics, economics, and gambling, to
name just a few.

Once we have analyzed a problem, the next step is to generalize. The
reason for this is that generalizations are often as easy to study as the
particular example while being far more widely applicable.

To generalize our savings problem, suppose the interest was not 10
per cent but some other per cent, say 100 per cent (where I = 0.1 in our
previous discussion). The amount next year is the amount we have this
year plus I times the amount we have this year. Written in the language
of mathematics

An+1)=A(n)+IA(n) = (1+1)A(n), forn=0,1,2,.... (3)

Note that when I = 0.1, equation (3) is the same as equation (1).
Mathematicians prefer writing equations in more general forms, like
equation (3), not because we like to confuse people, but because we are
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lazy (in the sense that we do not want to do work that is unnecessary).
It actually happens that it is as easy to handle equation (3) as it is to
handle equation (1). But once we have analyzed equation (3), if the bank
changes its interest rate we will know what happens to our money with
no additional work.

Similar to Example 1.1, the solution to equation (3) is
A(k) = (1 +I)FA(0), fork=0,1,2,.... (4)

Equations that describe a relationship between one point in time and
a previous point in time, such as equation (1) and equation (3), are called
discrete dynamical systems or difference equations. Closed form, or ex-
plicit, expressions for the amount in any year, such as equation (2) and
equation (4), are called solutions to the corresponding dynamical system.
This will be stated more precisely in the next section.

1.1.1 Problems

1. Suppose a bank pays 5 per cent interest on its savings accounts,
compounded annually.

(a) Write down a dynamical system for the amount in the account
in year n + 1 using the amount in the account in year n.

(b) Given that the initial deposit is A(0) = 200, find the amount
in the account after 1, 2, 3, and 4 years.

(c) Give the solution to the dynamical system.

2. Suppose a broker charges a 2 per cent service charge on the money
in your savings account each year.

(a) Assuming your broker makes bad investments and that you do
not earn any interest on your account, give a dynamical system
for the amount in your account one year using the amount in
the account the previous year.

(b) Given that the initial deposit is 500 dollars, find the amount
in your account after 1, 2, 3, and 4 years.

(c) Give the solution to the dynamical system.
3. Suppose a bank pays 8 per cent interest each year on its checking

accounts, but it also deducts 40 dollars per year as a service charge
(after first adding on the interest).

(a) If your initial deposit is 1000 dollars, what do you have in your
account after 1 year, 2 years, and 3 years?
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(b) Write a dynamical system to model this process.

4. Suppose that you borrow 2000 dollars from a friend. You agree to
add 1 per cent interest each month to the amount of the loan that is
still outstanding and also to pay your friend 150 dollars each month.
Assume that the interest is first added on to what you owe and then
your 150 dollar payment is subtracted.

(a) Write a dynamical system to describe the amount A(n) that
you owe your friend after n months.

(b) Using a calculator and the dynamical system, find how many
months it will take you to pay off your loan and what the final
payment will be.

5. Suppose your bank pays 8 per cent interest, compounded quarterly,
and you initially deposit 100 dollars. Let A(n) be the amount in
your account after n quarters.

(a) Develop a dynamical system to describe the amount in your
account in one quarter in terms of the amount in the previous
quarter.

(b) Compute the amount in your account at the end of 1 year.
Notice that you made more than 8 per cent interest for the
year. (Remember that A(1) is the amount after one quarter,
not 1 year.)

(c) Develop a closed form expression for the amount in your ac-
count after n quarters.

(d) Develop a closed form expression for the amount in your ac-
count after ¢ years.

6. Suppose your bank pays 100I per cent interest, compounded m
times per year. Let A(n) be the amount in your account after n
compounding periods. For example, A(m) represents the amount
after 1 year.

(a) Develop a dynamical system to describe the amount in your
account in one compounding period in terms of the amount in
the previous compounding period.

(b) Develop a closed form expression for the amount in your ac-
count after n compounding periods in terms of I, A(0), and
m.
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(c) Develop a closed form expression for the amount in your ac-
count after ¢ years in terms of I, A(0), and m.

1.2 Terminology

Definition
1.2

The dynamical systems we will consider come in many different forms
but, as we will see, seemingly different types of equations can be handled
similarly. Therefore we will divide these equations into large classes and
study each class separately.

Informally, a discrete dynamical system is a sequence of numbers that
are defined recursively, that is, there is a rule relating each number in
the sequence to previous numbers in the sequence. One example is the
sequence 0, 1, 2, .... Denoting each of these numbers by A(k) = k for
k=0,1,2,..., we note that the rule relating the numbers is A(n+1) =
A(n) + 1. For the sequence 2, 4, 8, 16, ..., the rule is A(n +1) = 2A(n),
that is, each number is twice the previous number.

It is usually easier to give the rule and the first number, and then
compute the sequence. Consider the rule

A(n+1) =2A(n)(1 — A(n)),
with the first number being A(0) = 0.1. We then get the sequence

A(1) = 2A4(0)(1 — A(0)) =0.18, A(2) =0.2952, A(3) =0.416,... .

Suppose we have a function y = f(z). A first order discrete dynamical
system is a sequence of numbers A(n) forn =0, ... such that each number
after the first one is related to the previous number by the relation

A(n +1) = f(A(n)).
The sequence of numbers given by the relationship
A(n+1) — A(n) = g(A(n))
is called a first order difference equation. Note that by letting f(z) =

g(z) + z, these two concepts are seen to be equivalent.

From now on, we will often omit the term ‘discrete’ and just call such
sequences dynamical systems. We will also equate a dynamical system
with the rule that defines it. Three examples of dynamical systems are
the relationships

A(n)

Ap+ 1) =340} Alp+1)=24m+3, Ant+l)=3 e



