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Preface

Rock and soil are the major constituent materials of the lithosphere of the earth.
They are also the most widely used engineering materials. Rock and soil exhibit
some remarkable characteristics of deformation and strength behavior, such as the
pressure sensitivity(or pressure dependency), shear dilatancy, dependency of stress
path etc. The two phenomena of pressure sensitivity and shear dilatancy have
long been known by people. However, their origin of generation is not explained
rationally yet.

Based on the Noll’s principle of local action that asserts that the generation and
transmission of stress in an object can be realized only through the deformation of
that object, and the analysis of mechanism of mechanical response of geotechnical
materials, the author (2006) proposed the principle of interaction between plastic
volumetric and shear strains. The pressure sensitivity and shear dilatancy are
the two kinds of manners of the interaction between plastic volumetric and shear
strains. The effect of the shear strain on volumetric strains is direct, i.e., the shear
dilatancy, whereas the effect of the volumetric strain on shear strains is realized
only through changing the resistance to shearing. Thus, the two phenomena are
not irrelevant to each other, or rather, they are linked up with each other by having
a common origin of creation.

The principle of interaction between plastic volumetric and shear strains states
that in the plastic deformation for geotechnical materials, there exist two relatively
independent strains: volumetric and shear strains, and the highly complex and
nonlinear interaction between them, which is the major origin of generation of
the fundamental characteristics of plastic deformation behavior for geotechnical
materials (Chapter 5).

According to the well-known formula proposed by Einstein, E = mc?, the mass

is also a measure of energy. Thus, the mass density of a material element represents
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a kind of energy storage per unit volume.

Herein, a form of energy that is a kind of energy storage associated only with the
mass per unit volume was introduced, which is named the density of compaction
energy that represents an ability of resistance to deforming.

In fact, the change in the plastic volumetric strain directly leads to that in the
mass density. Thus, the effect of the plastic volumetric strain on shear strains is
carried out essentially through changing the mass density. Therefore, the inter-
action between plastic volumetric and shear strains can be better understood as
that between the mass density (or mass distribution) and deformation, which more
deeply reflects the physical meaning of this interaction, that is, the ability of re-
sistance to deforming depends upon the mass distribution, while the deformation
can also make the mass redistribute.

Thus, the principle of interaction can also be called as the principle of iﬁteraction
between mass distribution and deformation.

In the light of the principle of interaction, the three corollaries of the principle
of interaction have been deduced.

Corollary 1 In the plastic deformation of geotechnical materials, the plastic
volumetric strain controls the change in the resistance to shearing (Chapter 5).

It can also be stated as that in the plastic deformation of geotechnical materials,
the mass density governs the change in the resistance to shearing.

Corollary 2 The dependency of stress path is a combined effect of the pres-
sure sensitivity and shear dilatancy, that is, a comprehensive manifestation of the
interaction between plastic volumetric and shear strains (Chapter 6).

Corollary 2 has theoretically been proved based on the principle of interaction
{Chapter 6).

The large stress reversals, in fact, are a kind of special stress paths, so that
the rotational hardening induced by them can be attributed to the dependency of
stress path.

Corollary 3 The interaction between plastic volumetric and shear strains
penetrates through the whole process of deformation until entering into the critical

state in which this interaction disappears (Chapter 6).
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According to the principle of interaction, it has theoretically been proved that
the critical state line exists, and is unique and independent of the stress history
(Chapter 6).

To reproduce the true behavior features of rock and soil it is necessary to capture
what is behind the behavior of geotechnical materials. The principle of interaction
tells us that the major fundamental deformation characteristics for geotechnical ma-
terials all stem from the interaction between plastic volumetric and shear strains.
Therefore, in order to build such a constitutive model that it is able to more com-
pletely and accurately reproduce the mechanical response of geotechnical materials,

the model must sufficiently reflect the interaction.

Under the direction of the principle of interaction, the constitutive equations for
geotechnical materials have been derived within the framework of the thermody-
namics of irreversible processes, in which four internal variables were introduced to
quantitatively depict the interaction between plastic volumetric and shear strains.
In addition, it has been proved that the second law of thermodynamics is satisfied

during the process of plastic deformation (Chapter 7).

Two families of volumetric and shear yield loci which are taken as two sets of
lines of constant plastic volumetric and shear strains, respectively, were adopted
to depict the processes of strain hardening and strain softening evolutions. Fortu-
nately, they can be plotted in the p-q stress plane based on the results of triaxial
tests by using the method proposed by Huang et al. (1981). It should be pointed
out that the directions of the outward normals to the volumetric and shear yield
loci essentially represent those of plastic volumetric and shear strain increment

vectors, respectively. Thus they can all be determined experimentally (Chapter 7).

In Chapter 8, the mechanism of damage of metals and some engineering ma-
terials has been expounded. Since the initiation, growth and coalescence of mi-
crocracks, and, eventually, the formation of macrocracks necessarily lead to the
dilation of volume of material element and a corresponding drop in mass density of
element, thereby reducing the resistance to deforming. Thus, for metals, it could
be expected that the major mechanism of plastic deformation will be converted

from the movement of dislocations to the interaction between plastic volumetric
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and shear strains when the volumes of elements expand to a certain extent. In ad-
dition, the damage of materials is actually a process of strain softening. Therefore,
it can be described by means of the constitutive equations derived here, by which
the elastic-plastic model describing the damage evolution has been built (Chapter
8).

The author (2002) proposed a numerical method of constitutive modeling for
geotechnical materials. Based on the inverse problem theory, the constitutive mod-
eling of materials, in fact, is an inverse problem that belongs to the problems of
model identification in the inverse problem theory.

The problems of model identification are classified into two kinds: medium in-
verse problems and source inverse problems. The constitutive modeling for geotech-
nical materials belongs in the former, which is represented as an inversion of coef-
ficients of differential equation. Thus, the constitutive modeling will become the
inversion of coefficients of a set of constitutive equations. The constitutive equa-
tions of geotechnical materials are a set of field equations in the p-g stress plane,
the coefficients of which are functions of stress state and are also dependent on
the stress path, so their inversions require to be carried out in the whole p-q stress
plane by means of some numerical techniques. Thus, it is called the numerical

method of constitutive modeling.

Applying the numerical method of constitutive modeling the elastic-plastic
models for clay and sand under five kinds of stress paths have been built. Through
visualization, the surfaces of shear and volumetric strains were plotted in the
p-q stress plane, respectively, which more completely show the features of strain
hardening and strain softening evolutions, thereby confirming the abilities of these

models to sufficiently reflect the interaction (Chapter 9).

In Chapter 3 and 4, the fundamental characteristics of deformation behavior
for rock and soil, and the recent development of the study on constitutive modeling
for geotechnical materials were briefly described, respectively.

The geotechnical materials are one kind of materials among the most complex
materials in solid. The study on their behavior is closely related to many branches

of physics, mechanics as well as chemistry, especially, continuum mechanics and
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thermodynamics.
Therefore, to conveniently consult the materials about their basic theories, the
fundamentals of continuum mechanics and thermodynamics were briefly introduced

in Chapter 1 and 2, respectively.
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Chapter 1

Introduction to Continuum Mechanics

1.1 The definition of a continuum

The classical concept of a continuum originates from mathematics, in which the
real number system is a continuum because there are infinitely many real numbers
between any two distinct real numbers. The concept of a continuum of matter can
be best explained by considering the concept of density. Let us assume a certain
space Sy permeated by a certain matter. Also consider a point P in Sp and a

sequence of subspaces Sy, Sg, ..., converging on P:
SnCSn_l, PESn (n=1,2,...)

Let the volume of S,, be V,, and the mass of the matter contained in S,, be M,,.
If the limit of M,,/V,, exists as n — co and V,, —0, the limiting value is defined as

the density of the mass distribution at the point P and is expressed as

p(P) = lim Mn (1.1.1)
Vn—0 Vn

This concept of the density of mass can also be extended to momentum, energy,
etc. A material continuum is a material for which the densities of mass, momentum,
and energy exist in the mathematical sense. The mechanics of such a material
continuum is called continuum mechanics (e.g., see (Fung, 1994)).

However, in real-world systems, materials are usually composed of crystals
and/or particles and there are cracks and voids between them. Thus, such a clas-
sical definition of material continuum given above could not be used in science and

technology.
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To fit the real world, an alternative definition of a continuum was proposed by
Fung (1994). Let us consider a point P in a space Sp, also consider a sequence
of subspaces S1, Sz, ..., Sp in Sy with volumes Vi, V3, ..., V;, respectively, each
enclosing the next one and all enclosing P. As n — o0, the limit of V,, tends to a
finite positive number w. Let the mass of the material enclosed in S,, be M,,. The
sequence of the ratios M,,/V,, is said to have a limit p with an acceptable variability
e if

<€ (1.1.2)

}_M_ﬂ_

Vo
as n — 0o. The quantity p is then said to be the density of the material at P with

an acceptable variability € in a defining limit volume w (Fung, 1994).

Similarly, the momentum of the materiel particles per unit volume and the
energy per unit volume can also be defined. In addition, we can define the strain
tensor or stress tensor with an acceptable variability in a defining limit length or
area in the same way as given above.

If the density, momentum, energy, stress, and strain can be defined at every
point in the space Sy, and if they are all continuous functions of spatial coordinates
in Sg, then the material in Sy is termed a continuum.

It should be pointed out that the defining limit volume should be the volume of
the representative element of a material, which is the smallest one in the volumes of
elements that are able to sufficiently reflect the physical and mechanical properties
of that material, and the acceptable variability would be chosen as a proper value
according to the structures of material at different scales of observation and the
requirements of practical researches.

For experimental purposes and the numerical analysis, it is useful to consider
the following orders of magnitude of the representative element, for example, as

shown in Table 1.1 (Lemaitre, 1992).

Table 1.1 The orders of magnitude of the representative element

material order of magnitude of element/mm3
metals and ceramics 0.13
polymers and most composites 13
wood 108

concrete 1003
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Particle sizes of soils vary in a very large range: clay (finer than 0.005mm),
silt (0.005~0.06mm), sand (0.06~2mm), grave (2~60mm), cobbles (60~200mm),
and boulder (coarser than 200mm). Therefore, the orders of magnitude of the

representative elements for soils with different particle sizes are quite different.

1.2 Deformation

Forces applied to a deformable body will cause the deformation of the body. In
fact, the deformation of a body is a manner to resist the external forces.

The deformation of a material can be mathematically described when the ma-
terial is assumed as a continuum.

Here, it should be emphasized that from the physical point of view, the defor-
mation at a point should be understood as that of the immediate neighborhood of
that point, or rather, the deformation of the representative element surrounding
that point.

Let us introduce a rectangular Cartesian frame of reference, every element in
the body that occupies a space S has a set of coordinates. When the body is
deforming, a element P, located at a place with coordinates (a;, az, ag), moves
to the point @ with coordinates (x1, 2, £3). The vector 1—3—63 is then termed the
displacement vector of the element.

Let the two set of variables (a;, az, as) and (z1, T3, x3) be the coordinates of
any element in the body before and after deformation, respectively. Assume z;,

T2, T3 are single valued and continuous functions of a,, as, as:
z; = z;(a1, a2, a3) (1.2.1)
In addition, assume the functions in Eq. (1.2.1) have the unique inverse
a; = a;(xl,zz,wg) (1.2.2)
The displacement vector u can be expressed in terms of its components
U; = Ty — a; (1.2.3)

Let us consider three neighboring points P, P/, P” in the body as shown in
Fig. 1.1.
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G3,%3
Y

Ga,Iy
a,T

Fig. 1.1 Deformation of a body

The points @, @', @" denote the corresponding new positions of P, P/, P” in
the deformed configuration.
Assume the distance between the point P(a;, a3, a3z) and a neighboring point

P'(a1 +dai, az +daz, az +dag) is infinitesimal and its square can be expressed as
ds? = da? + da? + da? (1.2.4)
Similarly, the square of the distance between point Q(x;, z2, z3) and point
Q' (zy + dzy, 2 + dza, z3 + dx3) can be written as
ds? = dz? + dz3 + dz? (1.2.5)
On account of Egs. (1.2.1) and (1.2.2), we have

_ Ba,-

_om

da:,- = aajdaj, da,', = gjda}j (1.2.6)
Thus, we may obtain
da; Oa;
2 _ 5..da.da; = i —t —2
ds§ = &;;da;da; = &y 37, 5z, dzidz.m,
s 5 (1.2.7)
2 _ 5. dpdas = ;. o 9%5
ds® = §;;dz;dz; % ey Do da;da,,
where 4;; is the Kronecker delta.
Thus, the difference between ds? and ds? may be written as
Oz, Ox
2 _ qe2 a8 5 da.:
ds* — ds; (6,,5 3a; Ba 5,3) da;da; (1.2.8)

or
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ds2 _ ds(z, = (6; — 60,'3%%%3') dlEidI’j (129)
i 3
We define the strain tensors
1 0z Oz

P —p— _— — 04 1. . 0
Ey 2(6°‘ﬂ Oa; Oa, 5’) (12.10)

1 Oa, Oag
€ij = 5 (6,;_7' - 6aﬂa_.’1:,-;9—£;;) (1.2.11)

The strain tensor E;; was introduced by Green and St.-Venan and is called
Green’s strain tensor. The strain tensor e;; was introduced by Cauchy for in-
finitesimal strains, and by Almansi and Hamel for finite strains and is known as
Almansi’s strain tensor (e.g., see (Fung, 1994)).

If the first derivatives of the components of displacement u; are so small that
the squares and products of the partial derivatives of u; are negligible, then e;;
reduces to Cauchy’s infinitesimal strain tensor,

1 Buj a’u,,',
e =5 [az,- + 53:7] (1.2.12)

The strain tensor e;; is obviously symmetric. For symmetric strain tensors, a set
of coordinates can be found, with respect to which the matrix of strain components
can be reduced to a diagonal one,

€1
€2
€3

The particular three coordinate axes are called the principal axes, and the
corresponding strain components are called the principal strains.

In can be proved that three principal strains, e;, es, es, are the roots of the
following equation

Ie,;j - 85,;j| =0 (1.2.13)

1
3 H 1 I — A e— — .. . '
We define a strain deviation tensor ej; = e;; 3(6005,,_7). Tensor ¢;; and e;;

have the following independent strain invariants:

Il = eij(s,'j
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I = %eikeik

I; = %eikekmemi (1.2.14)
and

J1=e;6;; =0

T2 = sebucy

J3 = %eﬁkekmeﬁm- (1.2.15)
1.3 Stress

Let us consider a body B and a closed surface S within B. Let AS be a small
surface element on S. Let » be the outward unit normal to AS. The material
outside S exerts a force AF on that inside S as shown in Fig. 1.2. The force AF

depends on the location, the area of AS and the orientation of the normal.

$2‘

/

I3

Fig. 1.2 A closed surface S in a body

Assume that as AS tends to a small but bounded size «, the ratio AF/AS tends
to a definite limit dF/dS with an acceptable variability ¢, and the moment of the
force acting on the surface AS about any point within the area vanishes in the
limit of small but bounded area a with an acceptable variability (Fung, 1994).

The limiting vector can be expressed as

t(n) = % (1.3.1)



