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Preface

This book is intended as a textbook or a reference book for a one-semester graduate
or senior undergraduate course in mathematical statistics. It is written for students
majoring in statistics or related fields.

Although there are many excellent English textbooks on this subject, most of
them contain lengthy explanations and examples, which are difficult for non-native
English readers to understand. My teaching experience in China and Canada has
inspired me to write a textbook with simple language and concise examples, re-
ducing the language barrier for students and teachers from non-English-speaking
countries.

This book grew from my lecture notes developed for teaching mathematical
statistics at Yunnan University (China) and University of Manitoba (Canada). The
contents and structure of the book are mainly taken from the classical textbook
Mathematical Statistics: Basic Ideas and Selected Topics (Vol I, 2nd ed. Prentice
Hall, 2002) by P. J. Bickel and K. A. Doksum, with reference to other standard
textbooks, such as Mathematical Statistics (Chapman & Hall/CRC, 2000) by K.
Knight, Statistical Inference (2nd ed. Duxbury Press, 2002) by G. Casella and R.
L. Berger, and Introduction to Mathematical Statistics (6th ed. Prentice Hall, 2005)
by R. V. Hogg, J. W. Mckean and A. T. Craig.

The mathematical background necessary for this book is linear algebra and
advance calculus (but no measure theory). It is assumed that the reader is familiar
with basic probability theory and statistical principle. The main objective of this
book is to build theoretical statistics by providing the essential material, which is
as mathematically rigorous as possible, to help students understand the statistical
background, thinking and methodology on a deep level.

This book consists of six chapters, containing the essentials of mathematical
statistics. The important statistical concepts and terminologies are italicized and
indexed. At the end of each chapter, we provide students with a number of exercises
selected from different sources, most notably the text by Bickel and Doksum.

Chapter 1 introduces statistical models and principles, including Bayesian mod-
els, the framework of decision theory, and some discussion about prediction, suf-
ficiency and exponential families. Chapter 2 discusses the methods of parameter
estimation in parametrical models, especially the algorithm of computing the MLEs
(maximum likelihood estimates) and related EM (Expectation/Maximization) al-
gorithm.
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Chapter 3 covers the optimality theory in parameter estimation, including Bayes
principle, minimax principle, unbiased estimation, Lehmann-Sheffé theorem, Rao-
Blackwell theorem, and the information inequality. Chapter 4 presents the basic
concepts and theories of hypothesis testing and confidence intervals (regions), fo-
cusing on the Neyman-Pearson lemma, likelihood ratio tests, as well as the duality
between confidence regions and hypothesis tests.

Chapter 5 deals with the large sample theories, discussing consistency of esti-
mation, asymptotic theories based on the delta method, and asymptotic normality
and efficiency of the MLEs. Finally, Chapter 6 further discusses the large sample
theories in the multiparameter case, with emphasis on the asymptotic behavior of
the MLEs, large sample tests and confidence regions, and large sample tests for
categorical data.

The book also provides the readers with Table of Common Statistical Distri-
butions in Appendix A, which includes the commonly used discrete distributions,
continuous distributions and multivariate distributions. For each listed distribution,
the table provides the detailed information about its pdf/pmf, moments, moment
generating function, and important notes on associated distributions. Indeed, the
table itself has rich contents as good reference materials on distribution.

Like many other textbooks in mathematical statistics, the commonly used sta-
tistical tables for the standard normal, t, x? and F distributions are attached in
Appendix B, where the table values are computed by using statistical software R,
available at the R’s official web site

http://www.r-project.org

In writing this book, I received great contribution from many of my students.
I take this opportunity to thank those graduate students who took Mathematical
Statistics from me and helped me in typewriting and proof-reading the manuscript.
Among them are Jie Li, Xiaojie Yang, Tianxia Ai, Hua Li, Yunqi Zhang, Xiaozhun
Zhuang and Menglin Li.

I would like to sincerely thank Professors P. J. Bickel and K. A. Doksum for
writing an excellent textbook, from which I greatly benefited. I am also very grate-
ful for all kinds of help from my teachers, colleagues, friends and students, especially
Xueren Wang and Niansheng Tang, Yunnan University; Yuehua Wu, York Univer-
sity; Jianxin Pan, University of Manchester; Xuming He and Peter Song, University
of Michigan (Ann Arbor); Michael Stephens and Richard Lockhart, Simon Fraser
University; James Fu, Liqun Wang and Xikui Wang, University of Manitoba; Gemai
Chen, University of Calgary; Jiahua Chen, University of British Columbia; Keming
Yu, Brunel University.

In addition, I would like to acknowledge the financial support of Yunnan Uni-
versity and the Natural Science Foundation of China (NSFC) for publishing this
book.

Last, but not least, I would like to sincerely thank my wife Jikun Yi and my



Preface - ii -

daughter Yili Zhang from the bottom of my heart for their patience, understanding,
encouragement and steadfast support. :

Jin Zhang

School of Mathematics and Statistics
Yunnan University

Kunming, China
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Chapter 1

Statistical Models and
Principles

Statistics is concerned with collecting data, analyzing data and interpreting data.
Our task is to extract information from the data, draw some conclusions, and in-
terpret the results. We do not consider the problem of data collection in this book,
but take the data as given and focus on the methods of data analysis: statistical
inference and decision theory.

The first chapter introduces some fundamental concepts of mathematical statis-
tics, including statistical models, Bayesian methods, the framework of decision the-
ory, prediction, sufficiency, and exponential families, which are essential for the
material in other chapters.

1.1 Statistical Models

A statistical model is a set of probability distributions on the sample space, which
are proposed to generate the sampled data. It is often convenient to index the
probability distributions of a statistical model by a parameter. Thus, a parametric
statistical model is just a parametric family of probability distributions proposed
to generate the data. In practice, different kinds of statistical models are used to
analyze data, interpret data, and predict the future.

1.1.1 Data and Models

In mathematical statistics, the ultimate object of our endeavor is to analyze the
data, which comes from most studies and experiments, scientific or industrial, large
scale or small scale. Statisticians draw useful information from the sampled data,
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using everything they know. The particular angle of mathematical statistics is to
view data as the outcome of random experiments that we model mathematically.

Example 1.1.1. Sampling Inspection. Consider a population of N elements, for
instance, a shipment of manufactured items, where the proportion of defective items,
0, is unknown. When a sample of size n is drawn from the population without
replacement and inspected, the sample space consists of the numbers 0,1,--- ,n
corresponding to all possible number of defective items found.

On this space, a random variable X can be defined by
k) =k E=01.--.n,

where k is number of defective items in the sample. Then, X has a hypergeometric

distribution:
W N — N6
k n—k
P(X =k) =
N
(%)

if max{n — N(1—6),0} < k < min{N6,n}. The hypergeometric distribution model
is denoted by H(N6, N,n). ‘ O

Example 1.1.2. One-Sample Models. Let the sampled data be n independent
measurements 1,2, - - , T, of a physical constant u, which are realizations of in-
dependent and identically distributed (i.i.d.) random variables X, Xo,--- , X,, with
common unknown distribution function F. Then, our model is

Xy =ippflegy me=1y2]. «yny
where € = (e1,€2, -+ ,&,)" is the vector of random error, satisfying the following
assumptions:
(1) The distribution of € is independent of .
(2) Random errors €1,é€3,- - , &, are mutually independent.
(3) Random errors €1,¢5 -+ - , &, are identically distributed.
(4) The common distribution of the random errors is normal with mean 0 and

variance o2, which is unknown.

That is, random errors €1,€3, -+ ,&, are i.i.d. from N(0,02). In other words,
X1, Xa,+++ , X, are i.i.d. from N(g,0?). Then the common distribution function

of X;’sis F(z) = (I)(if_g_#), where ®(z) is the distribution function of the standard
normal distribution N(0,1). O

In general, suppose we have a random experiment and define a random variable
X in the sample space X, which is the set of all possible outcomes of the random




1.1. Statistical Models -3 -

experiment. In the sample space X, we observe the data zi,zs,--- ,z,, which
are randomly drawn from & and can be thought of as outcomes or realizations of
random variables X;, Xs, -+ , X, from X with some probability distribution P. In
mathematical statistics, such Xy, X5, -, X, are known as a random sample from
P if they are i.i.d. random variables with common probability distribution P.

Suppose that the joint distribution of the sample X = (X, Xo,---,X,) is
unknown but belongs to some family of probability distributions called a statistical
model. It is often convenient to index the distributions of a statistical - model by
some parameter 6, which is a real number or vector and represents the unknown
part of the model. Then we can write our statistical model as

X=(X1,X21"'aXn)NP0a oeea

()
~

where stands for “is distributed as”, Py denotes the probability distribution or
measure of the model indexed by parameter 6, and © is the parameter space, the
set of all possible values for the parameter 6.

In particular, the statistical model in Example 1.1.1 is
X ~H(NO,N,n), 6 €O,

where the sample space is X = {0,1,--- ,n}, X is the number of defective items in

the sample, the parameter 6 is the proportion of defective items in the population,
139 N-1

S HEL DL RO TR0
N DK B, TN 2 }
The statistical model in Example 1.1.2 is

and the parameter space is © = {0,

leX2a"' ’Xn %N(/-‘aaz)a 0 e ea
where the sample space is X = (—00,00), X1, X5, -, X, are i.i.d> measurements
of p, § = (u,0?) is the vector of parameters, and the parameter space is © =
(—OO, OO) X (0’ OO)

1.1.2 Parameters and Statistics

In statistics, the data from the experiment and the parameter of a statistical model
have different roles. Actually, the data is observed by the experimenter, while the
true parameter in the statistical model is unknown to the experimenter. Thus, the
main goal of statistical analysis is to use the information from observed data to
make inference about the unknown parameter of the model.

When we write X ~ Py, 6 € ©, our sampled data X comes from a population
whose distribution P is indexed by a real-valued parameter (or parameter vector)
0, which captures important features of the population.

Usually we assume that © is a subset of Euclidean space, and the population
distribution Py is completely specified when 6 is known. Such a model is called a
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parametric model. For example, we have a parametric model

X17X21"' ,Xn@N(/L,GQ)

in Example 1.1.2, where 6 = (u,0%). However, this model becomes a semiparametric
model if we drop the normality assumption about the underlying distribution.

To rule out the possibility that the parametrization is not one-to-one, we often
require that the parametrization is identifiable, that is, 6; # 6 implies that Py, #
P,,. Otherwise, the parametrization is called unidentifiable.

Under the assumption that X ~ Py, 6 € ©, expectations calculated will be
written as Fy, cumulative distribution functions (cdf) will be denoted by F(-,6),
and probability density functions (pdf) or probability mass functions (pmf) by f(-,6).

For any parametric model, it is convenient to consider either

(1) All of the probability distribution Py are continuous with pdf f(z,#), where
[ f(z,0)dz =1 for all § € ©;

(2) All of P, are discrete with pmf f(z,6), the sample space {z1, 2,23, } is
independent of 6, and > "2, f(z;,0) = 1 for all € ©.

Such a model is known as a regular model. In Example 1.1.2 with assumptions

(1)-(4), 0 = (g,0%), © = R x R*, and f(z,0) = [T, §<p(”"";“), s SRR

density function of the standard normal distribution.

Statistics are functions defined on the sample space, which can be real-valued or
vector-valued. Formally, a statistic is defined as a function of the sample: 7' = T'(X)
that does not depends on any unknown parameter.

The aim of using a statistic is to summarize the information in the sampled
data X = (X3, Xs,-+ ,Xp). For example, to estimate the population mean p and
variance o2, we can use the simplest statistics

i A
e — = | X s d &=
n; and s

as their natural estimates, where X and s? are called the sample mean and sample
variance.

1.2 Bayesian Models

There are different philosophies of statistical inference, which can be classified into
two major schools: the Frequentist school and Bayesian school, representing the
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classical (traditional) school and the modern (contemporary) school respectively.
The Frequentist method is the most commonly used in practice, but it is, by no
means, superior or inferior to the Bayesian method.

In statistics, Frequentists draw objective information from the sampled data to
make inference on the unknown parameters of statistical models, while Bayesians
use the sampled data to update subjective belief about uncertain parameters in the
models.

The main criticism of Bayesian statistics concerns its subjectivity. Most critics
of Bayesian methods focus on the difficulty of choosing the prior distribution. Nev-
ertheless, the Bayesian approach provides a unified theory for statistical inference
and decision making. As a matter of fact, every Frequentist result can be obtained
using Bayesian methods by selecting a proper prior distribution.

Let X = (X1, Xs,--+,X,) be the sampled data. Consider a parametric model:
X ~ Py, 0 €0O.

In the Frequentist approach, the parameter 6 is considered to be unknown but fixed.
Then the data X is the only information to be used to estimate the parameter 6 or
make inference about 6.

In the Bayesian approach, however, the parameter 0 is considered as a random
variable or vector, which has a prior distribution with density or mass function 7(6),
reflecting an experimenter’s subject belief or information about the true parameter
0 before the experiment. The prior is known as a improper prior if

/7r(0)d0 =00 0T Zw(a) =00

The basic idea of Bayesian methods is to use the distribution of the sample to
update the prior distribution. g

In a Bayesian model, Py is considered as the conditional distribution of X given
0 = 0, so its pdf or pmf f(z,0) is denoted as f(x|6#). Then, the joint pdf or pmf

for X and 0 is
f(x,0) = f(x|0)x(6),
and the pdf or pmf of the posterior distribution is given by

m(0|x) SRR if 0 is continuous
/f(z|t)7r(t)dt
= _—f(:c|0)7r(0) if @ is discr
= Zt F@lt)n @) f 0 is discrete,

which actually is the conditional pdf or pmf of @ given X = .

In Bayesian statistics, all the information about 6 is contained in the posterior
distribution, which combines the objective information on # from the sampled data
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and the subjective information from the prior distribution. Therefore, any statistical
inference about € should be decided by the posterior distribution.

The framework of the Bayesian decision theory will be briefly discussed in the
next section. For more description and discussion about the Bayesian models, refer
to Savage (1972) and Berger (1985).

1.3 The Framework of Decision Theory

In this section, we briefly introduce and discuss the basic concepts of decision theory.
Generally speaking, the framework of decision theory consists of action space, loss
function, decision rule and the risk function, as well as the Bayes and minimax
criteria.

Decision theory provides a unified theory for statistical inference and decision
making, enabling us to think clearly about estimation, testing, and confidence re-
gions in a unified way.

1.3.1 Components of the Decision Theory

The decision theoretic foundation of statistics includes four elements: action space,
loss function, decision rule, and risk function. We now introduce the notions of
these four components of decision theory.

Action Space: A

An action space A consists of actions (decisions or claims) that we can make
based on the sampled data X = (X3, Xs,---,X,). There are different types of
action spaces for different situations, such as estimation of parameters and tests of
hypotheses. Here are simple illustrations for the cases of estimation and testing.

e ]

Estimation. A = {all q(0)} for estimating ¢(6), some function of 6, where ¢(6)

denotes any estimate of q(#). For example, to estimate 6 (the proportion of defec-

1
tive items) in Example 1.1.1, we can take A = {0, —,—,---,1}, To estimate the

population mean p in Example 1.1.2, let A = R.

Testing. A = {0,1} with 0.or 1 corresponding to two actions: accepting or rejecting
null hypothesis Hy : 8 € ©g.

Loss function: [(0,a)

A loss function is used to describe the loss when we take an action a based on
the observed sample X = . It is defined as a function {(6,a): © x A — R*. The
most commonly used lost functions are quadratic loss for estimation and 0-1 loss
for testing, which are described as below.



