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Introduction to Random Graphs

From social networks such as Facebook, the World Wide Web and the Internet, to the
complex interactions between proteins in the cells of our bodies, we constantly face
the challenge of understanding the structure and development of networks. The theory
of random graphs provides a framework for this understanding, and in this book the
authors give a gentle introduction to the basic tools for understanding and applying
the theory. Part one includes sufficient material, including exercises, for a one-semester
course at the advanced undergraduate or beginning graduate level. The reader is then
well prepared for the more advanced topics in Parts two and three. A final part provides
a quick introduction to the background material needed.

All those interested in discrete mathematics, computer science or applied probability
and their applications will find this an ideal introduction to the subject.

Alan Frieze is a Professor in the Department of Mathematical Sciences at Carnegie
Mellon University. He has authored more than 300 publications in top journals and
was invited to be a plenary speaker at the Seoul ICM 2014. In 1991 he received the
Fulkerson prize in discrete mathematics.

Michat Karonski is a Professor in the Departments of Mathematics and Computer
Science at Adam Mickiewicz University and Emory University. He is founder of the
Discrete Mathematics group in Poznaii and since 1990 has served as co-Editor-in-Chief
of Random Structures and Algorithms.
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Preface

Our purpose in writing this book is to provide a gentle introduction to a
subject that is enjoying a surge in interest. We believe that the subject is
fascinating in its own right, but the increase in interest can be attributed to
several factors. One factor is the realization that networks are “everywhere.”
From social networks such as Facebook, the World Wide Web and the Internet
to the complex interactions between proteins in the cells of our bodies, we face
the challenge of understanding their structure and development. By and large
natural networks grow in an unpredictable manner and this is often modeled by
arandom construction. Another factor is the realization by Computer Scientists
that NP-hard problems are often easier to solve than their worst-case suggests
and that an analysis of running times on random instances can be informative.

History

Random graphs were used by ErdGs [274] to give a probabilistic construction
of a graph with large girth and large chromatic number. It was only later that
Erd8s and Rényi began a systematic study of random graphs as objects of
interest in their own right. Early on they defined the random graph G, ,, and
founded the subject. Often neglected in this story is the contribution of Gilbert
[367] who introduced the model G, ,, but clearly the credit for getting the
subject started goes to ErdGs and Rényi. Their seminal series of papers [275],
[277], [278], [279] and, in particular, [276] on the evolution of random graphs
laid the groundwork for other mathematicians to become involved in studying
properties of random graphs.

In the early eighties the subject was beginning to blossom and it received
a boost from two sources. First was the publication of the landmark book
of Béla Bollobas [130] on random graphs. Around the same time, the
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Discrete Mathematics group at Adam Mickiewicz University began a series
of conferences in 1983. This series continues biennially to this day and is now
a conference attracting more and more participants.

The next important event in the subject was the start of the journal Random
Structures and Algorithms in 1990 followed by Combinatorics, Probability
and Computing a few years later. These journals provided a dedicated outlet
for work in the area and are flourishing today.

Scope of the book

We have divided the book into four parts. Part one is devoted to giving a
detailed description of the main properties of G, and G, ,. The aim is not
to give best possible results, but instead to give some idea of the tools and
techniques used in the subject, as well as to display some of the basic results
of the area. There is sufficient material in Part one for a one-semester course
at the advanced undergraduate or beginning graduate level. Once one has
finished the content of the first part, one is equipped to continue with material
of the remainder of the book, as well as to tackle some of the advanced
monographs such as Bollobas [ 130] and the more recent one by Janson, Euczak
and Rucinski [432].

Each chapter comes with a few exercises. Some are fairly simple and these
are designed to give the reader practice with making some of the estimations
that are so prevalent in the subject. In addition, each chapter ends with some
notes that lead through references to some of the more advanced important
results that have not been covered.

Part two deals with models of random graphs that naturally extend G,, ,, and
Gp,p. Part three deals with other models. Finally, in Part four, we describe some
of the main tools used in the area along with proofs of their validity.

Having read this book, the reader should be in a good position to pursue
research in the area and we hope that this book will appeal to anyone interested
in Combinatorics or Applied Probability or Theoretical Computer Science.
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Conventions/Notation

Often in what follows, we give an expression for a large positive integer. It
might not be obvious that the expression is actually an integer. In which case,
the reader can rest assured that he/she can round up or down and obtained any
required property. We avoid this rounding for convenience and for notational
purposes.

In addition we list the following notation:

Mathematical relations

e f(x)=0(gx)): f(x)| < Klg(x)] for some constant K > 0 and all x € R.

* f(x) = ©(g(x)): f(n) = O(g(x)) and g(x) = O(f (x)).

® f(x)=o0(gx)) as x — a: f(x)/g(x) > 0as x — a.

A <« B: A/B is sufficiently small for the succeeding arguments.

A > B: A/B is sufficiently large for the succeeding arguments.

A= B: A/B— 1 as some parameter converges to 0 or oo or another limit.
[n]: Thisis {1,2,...,n}. In general, if a < b are positive integers, then [a,b] =
{a,a+1,...,b}.

If S is a set and k is a non-negative integer then (}) denotes the set
of k-element subsets of S. In particular, ([z]) dnotes the set of k-sets of
{1,2,...,n}.

Graph Notation

o G=(V,E): V=V(G) is the vertex set and E = E(Q) is the edge set.
* ¢(G): |E(G)I.
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N(S) = Ng(S) where § C V(G). {w ¢ S : Jv € Ssuch that {v,w} € E}.
For a graph H, aut(H) denotes the number of automorphisms of H.

Random Graph Models

[n]: The set {1,2,...,n}.
%4, m: The family of all labeled graphs with vertex set V =[n] = {1,2,...,n}
and exactly m edges.

® G, m: A random graph chosen uniformly at random from %, ,,..

Eym = E(Gnm).

Gnp: A random graph on vertex set [n] where each possible edge occurs
independently with probability p.

En.p = E(Gn.p)-

G3ZX: Gy, conditioned on having minimum degree at least k.

Gppnp: A random bipartite graph with vertex set consisting of two disjoint
copies of [n] where each of the n? possible edges occurs independently with
probability p.

Gp,»: A random r-regular graph on vertex set [n].

® 4, a: The set of graphs with vertex set [n] and degree sequence

d=(di.dy,....d,).

Gp.q: A random graph chosen uniformly at random from %, 4.

H, mx: A random k-uniform hypergraph on vertex set [n] and m edges of
size k.

H, p.: A random k-uniform hypergraph on vertex set [n] where each of the
(Z) possibles edge occurs independently with probability p.

Gi_ow: A random digraph on vertex set [n] where each v € [n] independently
chooses k random out-neighbors.

Gi—ow: The graph obtained from (f}k_o,,, by ignoring orientation and
coalescing multiple edges.

Probability

IP(A): The probability of event A.

EZ: The expected value of random variable Z.

h(Z): The entropy of random variable Z.

Po(l): A random variable with the Poisson distribution with mean /.
N(0,1): A random variable with the normal distribution, mean 0 and
variance 1.

Bin(n,p): A random variable with the binomial distribution with parameters
n, the number of trials and p, the probability of success.

EXP(l): A random variable with the exponential distribution, mean / i.e.
P(EXP(I) > x) = e *. We sometimes say rate 1/l in place of mean /.
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e w.h.p.: A sequence of events &,,n = 1,2,..., is said to occur with high
probability (w.h.p.) if lim,_, .o P(27,) = 1.

. —l—)>: We write X, 2 X to say that a random variable X, converges in
distribution to a random variable X, as n — o00. Occasionally we write
X, £> N(0,1) (resp. X, £> Po(])) to mean that X has the corresponding
normal (resp. Poisson) distribution.
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