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Advanced Texts in Physics

This program of advanced texts covers a broad spectrum of topics which are of
current and emerging interest in physics. Each book provides a comprehensive and
yet accessible introduction to a field at the forefront of modern research. As such,
these texts are intended for senior undergraduate and graduate students at the MS
and PhD level; however, research scientists seeking an introduction to particular
areas of physics will also benefit from the titles in this collection.



Preface

Purpose and Emphasis. Mechanics not only is the oldest branch of physics but
was and still is the basis for all of theoretical physics. Quantum mechanics can
hardly be understood, perhaps cannot even be formulated, without a good knowl-
edge of general mechanics. Field theories such as electrodynamics borrow their
formal framework and many of their building principles from mechanics. In short,
throughout the many modern developments of physics where one frequently turns
back to the principles of classical mechanics its model character is felt. For this
reason it is not surprising that the presentation of mechanics reflects to some ex-
tent the development of modern physics and that today this classical branch of
theoretical physics is taught rather differently than at the time of Arnold Som-
merfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the
theory and the applications of partial-differential equations. Today, symmetries and
invariance principles, the structure of the space~time continuum, and the geomer-
rical structure of mechanics play an important role. The beginner should realize
that mechanics is not primarily the art of describing block-and-tackles, collisions
of billiard balls, constrained motions of the cylinder in a washing machine, or bi-
cycle riding. However fascinating such systems may be, mechanics is primarily
the field where one learns to develop general principles from which equations of
motion may be derived, to understand the importance of symmetries for the dy-
namics, and, last but not least, to get some practice in using theoretical tools and
concepts that are essential for all branches of physics.

Besides its role as a basis for much of theoretical physics and as a training
ground for physical concepts, mechanics is a fascinating field in itself. It is not easy
to master, for the beginner, because it has many different facets and its structure is
less homogeneous than, say, that of electrodynamics. On a first assault one usually
does not fully realize both its charm and its difficulty. Indeed, on returning to
various aspects of mechanics, in the course of one’s studies, one will be surprised
to discover again and again that it has new facets and new secrets. And finally, one
should be aware of the fact that mechanics is not a closed subject, lost forever in
the archives of the nineteenth century. As the reader will realize in Chap. 6, if he
or she has not realized it already, mechanics is an exciting field of research with
many important questions of qualitative dynamics remaining unanswered.

Structure of the Book and a Reading Guide. Although many people prefer
to skip prefaces, I suggest that the reader, if he or she is one of them, make an
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exception for once and read at least this section and the next. The short introduc-
tions at the beginning of each chapter are also recommended because they give a
summary of the chapter’s content.

Chapter 1 starts from Newton’s equations and develops the elementary dynam-
ics of one-, two-, and many-body systems for unconstrained systems. This is the
basic material that could be the subject of an introductory course on theoretical
physics or could serve as a text for an integrated (experimental and theoretical)
course.

Chapter 2 is the “classical” part of general mechanics describing the principles
of canonical mechanics following Euler, Lagrange, Hamilton, and Jacobi. Most of
the material is a MUST. Nevertheless, the sections on the symplectic structure
of mechanics (Sect.2.28) and on perturbation theory (Sects.2.38-2.40) may be
skipped on a first reading.

Chapter 3 describes a particularly beautiful application of classical mechanics:
the theory of spinning tops. The rigid body provides an important and highly non-
trivial example of a motion manifold that is not a simple Euclidean space R2f,
where f is the number of degrees of freedom. Its rotational part is the manifold of
SO(3), the rotation group in three real dimensions. Thus, the rigid body illustrates
a Lie group of great importance in physics within a framework that is simple and
transparent.

Chapter 4 deals with relativistic kinematics and dynamics of pointlike objects
and develops the elements of special relativity. This may be the most difficult part
of the book, as far as the physics is concerned, and one may wish to return to it
when studying electrodynamics.

Chapter 5 is the most challenging in terms of the mathematics. It develops
the basic tools of differential geometry that are needed to formulate mechanics in
this setting. Mechanics is then described in geometrical terms and its underlying
structure is worked out. This chapter is conceived such that it may help to bridge the
gap between the more “physical” texts on mechanics and the modern mathematical
literature on this subject. Although it may be skipped on a first reading, the tools
and the language developed here are essential if one wishes to follow the modern
literature on qualitative dynamics.

Chapter 6 provides an introduction to one of the most fascinating recent de-
velopments of classical dynamics: stability and deterministic chaos. It defines and
illustrates all important concepts that are needed to understand the onset of chaotic
motion and the quantitative analysis of unordered motions. It culminates in a few
examples of chaotic motion in celestial mechanics.

Chapter 7, finally, gives a short introduction to continuous systems, i.e. systems
with an infinite number of degrees of freedom.

Exercises and Practical Examples. In addition to the exercises that follow
Chaps. 1-6, the book contains a number of practical examples in the form of exer-
cises followed by complete solutions. Most of these are meant to be worked out on
a personal computer, thereby widening the range of problems that can be solved
with elementary means, beyond the analytically integrable ones. I have tried to
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choose examples simple enough that they can be made to work even on a pro-
grammable pocket computer and in a spirit, I hope, that will keep the reader from
getting lost in the labyrinth of computional games.

Length of this Book. Clearly there is much more material here than can be
covered in one semester. The book is designed for a two-semester course (i.e., typ-
ically, an introductory course followed by a course on general mechanics). Even
then, a certain choice of topics will have to be made. However, the text is suffi-
ciently self-contained that it may be useful for complementary reading and indi-
vidual study.

Mathematical Prerequisites. A physicist must acquire a certain flexibility in
the use of mathematics. On the one hand, it is impossible to carry out all steps in
a deduction or a proof, since otherwise one will not get very far with the physics
one wishes to study. On the other hand, it is indispensable to know analysis and
linear algebra in some depth, so as to be able to fill in the missing links in a logical
deduction. Like many other branches of physics, mechanics makes use of many
and various disciplines of mathematics, and one cannot expect to have all the tools
ready before beginning its study. In this book I adopt the following, somewhat gen-
erous attitude towards mathematics. In many places, the details are worked out to a
large extent; in others I refer to well-known material of linear algebra and analysis.
In some cases the reader might have to return to a good text in mathematics or
else, ideally, derive certain results for him- or herself. In this connection it might
also be helpful to consult the appendix at the end of the book.

- General Comments and Acknowledgements. This fourth English edition fol-
lows closely the seventh, enlarged, German edition. As compared to the third En-
glish edition published in 1999, there are a number revisions and additions. Some
of these are the following. In Chap. 1 more motivation for the introduction of phase
space at this early stage is given. A paragraph on the notion of hodograph is added
which emphasizes the special nature of Keplerian bound orbits. Chap. 2 is supple-
mented by some extensions and further explanations, specifically in relation with
Legendre transformation. Also, a new section on a generalized version of Noether’s
theorem was added, together with some enlightening examples. In Chap. 3 more
examples are given for inertia tensors and the use of Steiner’s theorem. Here and
in Chap. 4 the symbolic “bra” and *“ket” notation is introduced in characterizing
vectors and their duals. A new feature is a name index which, in addition to the
index, may be helpful in locating quickly specific items in mechanics. The book
contains the solutions to all exercises, as well as some historical notes on scientists
who made important contributions to mechanics and to the mathematics on which
it rests.

This book was inspired by a two-semester course on general mechanics that I
have taught on and off over the last twenty years at the Johannes Gutenberg Uni-
versity at Mainz and by seminars on geometrical aspects of mechanics. I thank my
collaborators, colleagues, and students for stimulating questions, helpful remarks,
and profitable discussions. I was happy to realize that the German original, since
its first appearance in October 1988, has become a standard text at German speak-
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ing universities and I can only hope that it will continue to be equally successful
in its English version. I am grateful for the many encouraging reactions and sug-
gestions I have received over the years. Among those to whom I owe special grati-
tude are P. Hagedorn, K. Hepp, D. Kastler, H. Leutwyler, L. Okun, N. Papadopoulos,
J.M.Richard, G. Schuster, J. Smith, M. Stingl, N. Straumann, W. Thirring, E. Vogt,
and V. Vento. Special thanks are due to my former student R. Schopf who collab-
orated on the earlier version of the solutions to the exercises. I thank J. Wisdom
for his kind permission to use four of his figures illustrating chaotic motions in
the solar system, and P.Beckmann who provided the impressive illustrations for
the logistic equation and who advised me on what to say about them.

The excellent cooperation with the team of Springer-Verlag is gratefully ac-
knowledged. Last but not least, I owe special thanks to Dérte for her patience and
encouragement.

As with the German edition, I dedicate this book to all those students who
wish to study mechanics at some depth. If it helps to make them aware of the
fascination of this beautiful field and of physics in general then one of my goals
in writing this book is reached.

Mainz, August 2004 Florian Scheck

I will keep track of possible errata on a page attached to my home page. The latter can be accessed via
http://www.thep.physik.uni-mainz.de/staff.html.
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1. Elementary Newtonian Mechanics

This chapter deals with the kinematics and the dynamics of a finite number of
mass points that are subject to internal, and possibly external, forces, but whose
motions are not further constrained by additional conditions on the coordinates.
(The mathematical pendulum will be an exception). Constraints such as requiring
some mass points to follow given curves in space, to keep their relative distance
fixed, or the like, are introduced in Chap.2. Unconstrained mechanical systems
can be studied directly by means of Newton's equations and do not require the
introduction of new, generalized coordinates that incorporate the constraints and
are dynamically independent. This is what is meant by “elementary” in the heading
of this chapter — though some of its content is not elementary at all. In particular,
at an early stage, we shall discover an intimate relationship between invariance
properties under coordinate transformations and conservation laws of the theory,
which will turn out to be a basic, constructive element for all of mechanics and
which, for that matter, will be felt like a cantus firmus' throughout the whole of
theoretical physics. The first, somewhat deeper analysis of these relations already
leads one to consider the nature of the spatial and temporal manifolds that carry
mechanical motions, thereby entering a discussion that is of central importance in
present-day physics at both the smallest and the largest dimensions.

We also introduce the notion of phase space, i.e. the description of physical
motions in an abstract space spanned by coordinates and corresponding momenta,
and thus prepare the ground for canonical mechanics in the formulation of Hamil-
ton and Jacobi.

We begin with Newton’s fundamental laws, which we interpret and translate
into precise analytical statements. They are then illustrated by a number of exam-
ples and some important applications.

1.1 Newton’s Laws (1687) and Their Interpretation

We begin by stating Newton’s fundamental laws in a formulation that is close to
the original one. They are as follows:

U cantus firmus: a preexisting melody, such as a plainchant excerpt, which underlies a polyphonic

musical composition.



