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Preface

Integral membrane proteins

The membrane has represented one of the most intractable elements of the
biological cell. From the time when it was realized that there was a barrier within
the plant cell wall and that this barrier represented the most important and
fundamental regulator of the cellular environment, considerable effort has been
expended to determine its nature and properties. The lipid fraction was the first to
be described but although that was achieved some time ago and interest has waned
somewhat since then, there are still fundamental mysteries to explain, not least the
real link between function and composition. Knowledge of the protein fraction
lagged some way behind, principally due to the intractability of these polypeptides
to the methodologies then available. But with the advent/use of such simple
molecules as detergents and organic solvents has come the dramatic advances in our
understanding of membrane proteins from the primitive days of scaffold-like
fragments to the tantalizing mechanisms suggested by the high-resolution 3-
dimensional structures of the photosynthetic reaction complex and cytochrome
oxidase.

Now that the molecular description of biology is in full flood, it is clearly important
to be able to describe the structure and mechanisms of action of integral membrane
proteins, both the types that are responsible for the translocation of material and
those which mediate the transfer of information. But this urgent need has not so far
been fulfilled because yet again, routine methodology is still not available. This has
given rise to alternative strategies to gain impressions, albeit crude and unreliable
ones, of the structures of integral membrane proteins. The usefulness of such
representations in facilitating experimental design and in stimulating the
development of new concepts should not be underestimated, however, for there is
ample evidence of their predictive potential at least at a low resolution level. During
the conference of which these are the proceedings, many of the strategies used to
further our structural understanding of integral membrane proteins were described
and discussed. Many models were presented and their strengths, weaknesses,
contradictions and inconsistencies thoroughly explored.

xiii
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G protein-coupled receptors

Most attention was devoted to the G protein-coupled receptors (GPCRs), surely now
the most avidly pursued and widespread family of proteins in eukaryotic biology.
Little did those few groups who wrestled with the mechanism of action, sequence
and topography of the visual pigment rhodopsin appreciate the avalanche of
structural and functional relatives that lie in the various eukaryotic genomes. The
elucidation of the seven transmembrane segments of opsin has given rise to one of
the most potent signatures of any protein family. There are now in the database over
700 (and rising) sequences which are recognized by this composite signature.
Clearly, this is still only a small proportion of the total if the estimates of the number
of olfactory receptors alone are in any way accurate. Already, however, interesting
divisions are appearing which in some ways reflect evolutionary distance. The
classical sequence-based motifs are incapable of recognizing sub-families such as
those for yeast mating factor receptors, the dictyostelium cAMP receptors, the
secretin subgroup and receptors for glutamate, Ca, gonadotrophin hormones etc. All
appear to be involved in some way with G proteins but perhaps the mechanism of
interaction and activation differs.

The assumption, so far unproven, is that the basic framework of these receptors
remains more or less intact but considerable functionality is incorporated, often in
association with new structural elements or additional domains. Thus, as the ligand
gets larger, as with the peptide receptors, the hydrophilic surface regions including
the extended N-terminus are recruited in to generate specific binding pockets. This
development reaches full expression in the large N-terminal extensions seen in the
follicle-stimulating hormone, thyroid-stimulating hormone and luteinizing hormone
receptors which have a major role in interacting with the protein ligand. Even larger
domains also occur in the glutamate and calcium receptors but here it is harder to
give a rational explanation for these regions given the small size of the ligand.
Whatever their precise role, these large domains are nevertheless both structurally
and functionally intimately associated with the transmembrane segments through
which the information flow must pass. It is to be expected that additional elements
of structure will also be found at the intracellular face of the receptor. This has
already been seen in the cephalopod visual receptors which possess a very unusual
region at the C-terminus, one that intriguingly occurs in other, unrelated proteins.

On the basis of limited biophysical evidence, bacteriorhodopsin was the template
used for the first tertiary structure representations of GPCRs. This assumption was
justified when the low resolution structure of rhodopsin appeared. But it is also clear
that the template was only an approximate one for there is variation in the relative
position and pitch of some of the transmembrane helices. It is reasonable to assume
that rhodopsin is now a more accurate template but, at the same time, it would not
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be unexpected to find that further differences occur throughout the family and more
likely still amongst the more distant and less conserved sub-families.

This conference was designed as a discussion forum to explain and examine the
various approaches to modelling integral membrane proteins in general and GPCRs
in particular. It revealed wide differences in interpretation particularly of the
mutagenesis data. The protein models themselves, despite having different origins
and being generated by different methods, apparently had a surprising degree of
convergence. The really striking differences were seen in the area of ligand docking
where quite different interpretations were put on much the same sets of data. The
inevitable conclusion from this was that models whilst stimulating, provocative and
reasonably predictive required much firmer structure-based data before one could
reliably move from low resolution representations to higher resolution ‘structures’.

Finally, one should not overlook the evolving but still unconfirmed concepts in
GPCR structure/function relationships. The ternary complex model and the
suggestions of a range of conformational intermediates between the activated R*
(agonist binding) and inactive R (antagonist binding) modes present new structural
challenges. So too do the increasingly frequent suggestions of different binding
epitopes for agonists and antagonists, particularly when the former is large and the
latter is relatively small. The even more detailed models of GPCRs will have to take
on board these subtle concepts and observations. Part of this appreciation must
involve a rational description of the activated state, particularly as it applies to the
fascinating array of constitutively active mutants.

Transporters/channels

Whilst there is some structural basis for modelling GPCRs, the situation for
transporters/channels is much more desperate, at almost all levels of resolution and
types of data. The best information so far comes from the structure of bacterial outer
membrane porins but it is not at all clear how representative these will be of the
majority of channels, since the entire membrane domain consist of an emaculate
B-barrel. The suggestions made for the acetylcholine (nicotinic) receptor are
intriguing in that a bundle of helices appear to provide the transport route but these
may be embedded in a continuous shell of B-sheet. Such data as exist for other
transporters/channels emphasize a substantial o-helical content, sometimes incor-
porating a channel-lining segment of unknown secondary structure. Thus, it looks
as though we may have a fascinating mixture of types with much scope for
imagination. However, there are both modelling and experimental approaches which
might provide useful insights into the structural and functional properties of proteins
which mediate material transport. A few examples of these are presented here to
illustrate their potential application to model construction.
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The meeting was entitled: ‘Membrane Protein Models: Experiment, Theory and
Speculation’ (Leeds, UK, March/April 1994, under the auspices of The Molecular
Graphics Society). From the excellent presentations that are included in this text, the
reader will quickly appreciate the lively and stimulating debates that took place on
all three aspects of the structure and function of integral membrane proteins.

J.B.C. Findlay
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Chapter 1

Prediction of
transmembrane
segments in proteins
using multiple sequence
alignments

Bengt Persson, Frank Milpetz and Patrick Argos

1. Introduction

Membrane proteins are important for several processes and functions in all
biological systems. For example, they act as receptors for neurotransmitters or
hormones (Savarese and Fraser, 1992; Stephenson, 1991), form a wide variety of
ion channels (Barnard, 1992; Miller, 1991), or serve as the respiratory chain
(Capaldi, 1991) and transport proteins for different molecules (Griffith et al., 1992;
Marger and Saier, 1993; Schloss et al., 1992). Bacterial toxins which form
membrane pores (Li, 1992) also belong to this large group of lipid-associated
molecules. There are several surface molecules which are anchored to the
membrane by one transmembrane segment, for example histocompatibility antigen
molecules (HLA), neuraminidases and haemagglutinins (cf. Popot and de Vitry,
1990).

Despite their biological significance tertiary structures have been determined for
only a few membrane proteins. Three-dimensional structures at medium to high
resolution are available for bacteriorhodopsin (Henderson et al., 1990), photo-
synthetic reaction centre (Deisenhofer et al., 1985), light-harvesting complexes
(Kiihlbrandt et al., 1994; McDermott et al., 1995), prostaglandin H, synthase-1
(Picot et al., 1994), porin (Weiss and Schulz, 1992) and cytochrome C oxidase
(Iwata et al., 1995). Other structures are not yet fully resolved, for example
photosystem I (Krauss et al., 1993) and nicotinic acetylcholine receptor (Unwin,
1993). Given the scarcity of tertiary structural information, many experimental
methods have been applied to determine membrane topology (Jennings, 1989),
including analyses of gene fusion proteins and studies of biochemically modified
membrane proteins (cf. Traxler et al., 1993).



2 Chapter 1

Membrane proteins constitute a ubiquitous group of structures with members
representing several different types of molecular architecture. However, since each
traverses the lipid bilayer once or several times, they generally possess hydrophobic
sequence segments. Various prediction methods use this characteristic to determine
the location of these membrane-spanning regions, albeit with varying degrees of
accuracy.

2. Present prediction methods

Theoretical prediction algorithms have been shown to be useful in detecting
membrane-spanning segments from the primary structure alone, especially as an aid
to designing experiments investigating protein topology. One of the most widely
used is that of Kyte and Doolittle (1982), where mean residue hydrophobicity values
are calculated for consecutive 19-residue sequence spans. Segments with
hydrophobicity above a certain threshold are predicted to be membrane-spanning. A
similar approach is adopted by Rao and Argos (1986), who also considered residues
that break the transmembrane helices in order to improve reliability of prediction.

Different prediction methods were reviewed and evaluated in 1990 by Degli Esposti
et al. They examined the correlations amongst the various amino acid hydro-
phobicity scales used and compared the accuracy of the various prediction
approaches. They also calculated a new set of parameters derived from seven
different scales (Degli Esposti et al., 1990). A trapezoidal sliding window was used
by von Heijne in his hydrophobic analysis of the sequence together with a consider-
ation of positively charged residues interior to the membrane (von Heijne, 1986)
particularly with application to the topology of bacterial inner membrane proteins
(von Heijne, 1992). These rules were also applied to a number of eukaryotic
membrane proteins (Sipos and von Heijne, 1993). Several studies have also been
effected regarding helix—helix interactions in membrane proteins (e.g. Lemmon and
Engelman, 1992).

Here we present a transmembrane helix prediction algorithm, based upon multiple
sequence alignments of related proteins. This method takes advantage of the
extended information not found in analysis of a single sequence as is character-
istically used by other approaches. The algorithm is described in detail elsewhere
(Persson and Argos, 1994). Present primary structural databases are large and
expanding at such a rate that homologous sequences are often found. We show that
this technique has higher accuracy in predicting transmembrane segments than
previous methods based on individual sequences.

3. Residue distributions in membrane proteins

The tertiary structure of only a few membrane proteins are known. However, other
types of data exist from various experiments and predictions to deduce the location



