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Preface

The word ““mathematics’ is derived from the Greek ra palfnuatika,
which means ‘‘learning” or ‘“knowledge.” Today, “mathematics” is
applied not to knowledge in general but to knowledge of a particular kind.
Still, there is some misunderstanding as to exactly what sort of knowledge
is involved. Often, the layman thinks of mathematics as arithmetic, and
of the mathematician as one who is very quick and clever at performing
computations. The scientist may think of mathematics as another science
of which arithmetic is only a very small part. Most professional mathe-
maticians, however, regard their subject as neither of these things. (Indeed,
it is commonly said, by mathematicians, that they can seldom add two
numbers correctly or balance a bank statement.) Present-day mathe-
maticians generally regard their subject as the study of logical conse-
quences of systems of axioms, where the axioms are completely arbitrary
statements made about completely abstract objects. Thus, one could
argue that mathematics is more closely related to philosophy or the arts
than to the sciences.

The purpose of this book is to acquaint the reader with some of the
basic concepts and techniques of mathematics, and to illustrate how these
concepts and techniques may be applied to an axiomatic development of
various number systems and to a study of cardinal numbers. Along the
way, many properties of the real numbers and of the cardinal numbers
will be investigated.

The book is intended for a one-semester course. Such a course might
be taken by students who are not planning to specialize in mathematics
but who, nevertheless, wish to learn about the nature of mathematics; by
students who do plan to specialize in mathematics and want a foundation
for their later studies; by prospective mathematics teachers; and by those
preparing to teach “modern’ mathematics. The book is also intended for
the general reader— whether he be a curious adult or a curious high-
school or college student.



x Preface

Very little previous knowledge of mathematics—at most, some ele-
mentary algebra—is required for an understanding of this book. Exer-
cises are provided at the ends of various sections. The reader is strongly
urged to carry out these exercises so that he may have adequate prepara-
tion for handling the ideas that follow.

The author sincerely thanks the staff of the International Textbook
Company for their help in the preparation of this book and in particular,
wishes to thank John W. Lindsay, San Fernando Valley State College, for
his many valuable comments and criticisms.

MAY RiscH KINSOLVING

Ithaca, New York
December, 1966
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1
Logic

1-1. INTRODUCTION

In order to understand some of the examples in the first two chap-
ters, one should be familiar with the following notions, which are de-
veloped more thoroughly in Chapters 3 through 6.

I. The numbers ---,-3,-2,-1,0,1,2,3,.-. are called integers. An
even integer is an integer which is a multiple of 2, that is, a number which
can be expressed in the form 2n, where n is an integer. The even integers

are---,—4,-2,0,2,4,---. An odd integer is a number which can be ex-
pressed in the form 27 + 1, where n is an integer. The odd integers are
---,=3,-1,1,3,5,---. The integers 1,2,3,--- are called positive inte-

gers. The integers - - -, —3, —2, —1 are called negative integers. The integer
0 is neither positive nor negative. An integer a is said to be divisible by an
integer b, where b is not 0, if there is an integer ¢ such that a = bc; that is,
a is the product of b and ¢. For example, 6 is divisible by 2, but 2 is not
divisible by 6.

2. Numbers of the form ﬂ, where p and g are integers and g is

q

not 0, are called rational numbers (ratios of integers). For example,

%, ;—;‘, and 1—09 are rational numbers. Moreover, any integer n is a ra-

. ; : n
tional number, since n may be expressed in the form —.

3. Numbers such as V2, v/2, and m, which cannot be expressed as
ratios of integers, are called irrational numbers.

4. All the rational numbers together with all the irrational numbers
constitute the set of real numbers or the real number system.

If x is a real number, then x* denotes the product of x with x, x* de-
notes the product of x*> with x, and soon.

For any two real numbers m and n, either m is greater than n, m
equals n, or m is less than n. If m is greater than n, we write m > n; if

1



2 Logic Sec. 1-1

m equals n, we write m = n; if m is less than n, we write m < n. For
example, 5 > 3; 3 = 3;3 < 5. The notation m = n or m < n indicates
that m is greater than or equal to n, or that m is less than or equal to n,
respectively; for example, 5 = 3; 5 = 5;3 < 5; 5 < 5. The notation
3 = x = 7indicates that x is a number between 3 and 7 and that x may
equal 3 or x may equal 7. The notation 3 < x < 7 indicates that x is a
number between 3 and 7 but that x may not equal 3 or 7. The notation
3 = x < 7 indicates that x is a number between 3 and 7 and that x may
equal 3 but not 7.

The symbol «, called infinity, does not denote a real number. To
assert that 0 < x < = is to assert that x is a real number which is greater
than 0; to assert that — < < x < o is to assert that x is any real number.

The absolute value of a real number x, denoted by | x|, is defined
as follows:

xifx = 0;
1 = {

—xifx < O.

Forexample, |5| = 5; | =5| =5: 10| = 0.

5. A complex number is a number of the form a + bi, where a and b
are real numbers and 7/ is a number (not real) with the property that
i? = —1. For example, 2 + 3i, 5 — 2/, and 6/ are complex numbers.
Any real number is also a complex number, with b equal to 0.

1-2. AXIOMS, THEOREMS, AND VALIDITY

In the logical development of any branch of mathematics, certain
undefined (or primitive) concepts must be introduced in order to avoid
circular definitions. As an everyday example, suppose that someone
wishes to learn the meaning of the word “‘parasang,” and in his dictionary
he reads that a parasang is a farsakh. Never having heard of the word
“farsakh™ before, he consults his dictionary again only to read that a
farsakh is a parasang. Surely our poor man has learned nothing from
these (circular) definitions. In geometry, “point” and ‘line’” often are
taken as undefined concepts, for defining a point as the intersection of two
distinct lines and a line as a join of two distinct points clearly is a mean-
ingless procedure. Indeed, with a little thought, one will be convinced
that it is impossible to define every word in a language.

After certain concepts have been chosen as undefined, all additional
concepts will be precisely defined in terms of these undefined ones.

A mathematical statement is a declarative sentence about one or
more undefined concepts.

Examples 1. “Two points determine a line” is a mathematical state-
ment.
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2. “Construct a line joining two given points” is not a mathe-
matical statement.

Certain mathematical statements are designated as axioms. Axioms
are assumptions, and they state everything that is assumed to be known
about the undefined concepts. A statement is considered valid if it is an
axiom or if it can be proved from the axioms and definitions, in accord-
ance with the rules of logical deduction, to be described in Sec. 1-4. A
proof of a statement consists of reasoning by which one justifies the
validity of the statement from the axioms and definitions.

It is important to note that the validity of a statement is completely
unrelated to the truth of the statement. Since the axioms are unproved
statements about undefined concepts, it certainly can make no sense to
speak of the truth of the axioms, let alone of any statement derived from
them. Bertrand Russell once said' that mathematics may be defined as
the subject in which we never know what we are talking about or whether
what we are saying is true. This is a sound observation for, since the
basic concepts are undefined, one does not know what he is talking about
when he speaks of these concepts, and, since the validity of a statement
depends upon unproved axioms, one can never know whether the state-
ment is true. Indeed, ‘“‘true” can have no meaning when applied to a
statement containing undefined concepts.

A theorem is a valid statement of importance; that is, an important
logical consequence of the axioms or definitions. A corollary is a valid
statement which is an immediate consequence of, or a special case of, a
preceding definition or theorem. A lemma is a valid statement which is
proved preliminary to proving a theorem. It may be of interest only in
that it is needed to establish a certain theorem.

A theorem (or corollary or lemma) may be expressed in the form,
“If P, then Q,” where P and Q are statements.

Examples 1. If two angles of a triangle are equal, then the sides oppo-
site the angles are equal.
2. If an integer a is less than an integer b, then a + 1 is less
than or equal to b.

Here, the statement “P” is called the hypothesis, the word “‘if”
indicating that P is assumed to be valid. The statement “Q” is called the
conclusion, the word “‘then” indicating that Q must be proved valid in
order to prove the validity of the theorem. The axioms are understood to
be assumed throughout the development of the mathematical theory and,

"“Recent Work on the Principles of Mathematics,” International Monthly, Vol. 4
(1901), p. 84.
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hence, generally are not repeated in the hypothesis. Because of this, a
theorem (or corollary or lemma) may simply have the form “Q.”

Example. The sum of the lengths of two sides of a triangle is greater
than the length of the third side.

In this case, the conclusion only is stated, and the theorem asserts
that the conclusion holds, providing that the axioms hold.

EXERCISE

State whether each of the following is a mathematical statement and
give all reasons for your answers.

a) 6is greater than 2.

b) 2is greater than 6.

¢) What is a number?

d) Why is 6 greater than 2?

e) Multiplying by 66,548,989.237 is a lot of work.

f) Curses on these numbers with many digits.

1-3. MATHEMATICAL USAGE OF CERTAIN WORDS

Certain words are used frequently in mathematical discourse. We
shall now consider some of these words and how their use in mathematics
differs from their everyday use. In order to give concrete examples of
some of the notions introduced, in this discussion we shall assume some
of the elementary properties of the real numbers.

The capital letters P, Q, R, and so on, will be used to denote state-
ments. For example, P might be the statement *“1 = 17 or the statement
“1+1 =27

The word “and” may be placed between two statements “P”’ and
“Q” to form a new statement ““P and Q.” The statement “P and Q" is
valid only when both P and Q are valid.

Example. Let P be the statement ““2 is an even number.” Let Q be the
statement ‘5 is an even number.” Then “P and Q” is the
statement ‘2 is an even number and 5 is an even number,”
which is not valid, even though P is.

The word “‘or”” may be placed between two statements “P”” and “Q”
to form a new statement “P or Q.” In mathematics, this compound
statement is understood to mean that either P is valid or Q is valid and
possibly both are valid. Thus, “or” is used in the ““and/or” sense (one or
the other or both). One should contrast this with everyday usage, where
“or” frequently means one or the other, but not both.
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Examples 1. Let P be the statement ‘4 is an even number.” Let Q be
the statement *‘5 is an even number.” Then “P or Q" is
the statement ““4 is an even number or 5 is an even num-
ber,” which is valid, since P is.

2. Let P be the statement ““4 is an even number.” Let Q be
the statement *‘6 is an even number.”” Then “P or Q” is
the statement ““4 is an even number or 6 is an even num-
ber,”” which is valid, since both P and Q are. (In everyday
usage, one might argue that “P or Q” is not valid simply
because both P and Q are valid.)

The word ““not” may be placed before a statement “P”’ to form a
new statement ““Not P.”” This new statement is called the negation of P.

Example. Let P be the statement ““4 is an even number.” Then “Not P”
is the statement “Not 4 is an even number” or ‘4 is not an
even number.”

The negation of the compound statement “P and Q” is “Not P or
not Q,” for to deny that P and Q are both valid is to assert that at least
one of them is not valid.

The negation of the compound statement “P or Q" is “Not P and
not Q,” for to deny that either P or Q is valid is to assert that both P
and Q are not valid.

The negation of the statement “Not P’ is “Not (not P)”; that

is, “P.”
The word “‘equals,” denoted symbolically by =, may be placed be-
tween two expressions to indicate that the two expressions are names of
the same identical object. Hence, if we know that a = a’, then we also
know thata’ = a, since, if a and a’ denote the same object, then a’ and a
denote the same object. By the same argument, if a = @’ and a' = a'/,
then a = a', for all three expressions are names of the same object. If
two expressions a and b are not equal, we write “‘a = b.”

Mathematical statements often concern sets of objects rather than
a single object. A quantifier is a word or phrase telling how many (quant-)
of the objects of the set are involved in the statement.

The quantifiers “‘each,” “any,” *‘every,” and “all” may be used
interchangeably.

Example. Each integer is a number; any integer is a number; every inte-
ger is a number; all integers are numbers.

The word ““any” may sometimes be used in a way in which the other
three words cannot. For example, suppose that we want to prove that
for all real numbers x, x? is positive. We might start by saying, ““Let x be
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any real number,” indicating that we are choosing an unspecified real
number x in an arbitrary fashion. Then we would proceed to show that
x?is positive, where x is our arbitrary unspecified number. From this, we
would conclude that all real numbers have positive squares, since our
arbitrarily chosen number does. The word ‘“‘any,” used in this way, can-
not be replaced by “‘each,” “‘every,” or “all.”

The quantifiers “some’ and *‘there exist” may be used interchange-
ably.

Example. For some number x, x? = 1; there exists a number x such that
2
x* = 1.

Consider the statement ““All integers are numbers.”” To deny this
statement, one would assert ““There exists an integer x such that x is not a
number.” To deny the statement ““There exists an integer x such that x is
not a number,” one would assert ““All integers are numbers.”

If P and Q are any two statements, one may form the compound
statement “If P, then Q,” or its equivalent, *“P implies Q.”” This is de-
noted symbolically by P = Q.

The statement “Q => P” is called the converse of the statement
“P = @Q.” The converse of a valid statement need not be valid.

Examples 1. Consider the statement “If an integer is divisible by 6,
then it is divisible by 3. Its converse is “‘If an integer is
divisible by 3, then it is divisible by 6.” The original
statement is valid; the converse is not.

2. Consider the statement “‘If a triangle is equilateral, then
it is equiangular.” Its converse is “If a triangle is equi-
angular, then it is equilateral.” Both the original state-
ment and its converse are valid.

The statement “Not Q = not P’ is called the contrapositive of the
statement “P = Q.” It will be shown, in Sec. 1-4, that if a statement is
valid, then its contrapositive is valid, and, conversely, if the contrapositive
of a statement is valid, then the statement itself is valid.

Consider the statement “P and Q = §.” Its converse is “S = P
and Q.” Its contrapositive is the statement “Not S = not (P and Q)”’;
that is, “Not S = not P or not Q.”

If Pimplies Q, then P is said to be a sufficient condition for Q, for,
if Pis valid, then Q must be valid also. That is, the validity of P is suffi-
cient for the validity of Q. Similarly, it is said that Q is a necessary condi-
tion for P, for, if “Not Q" were valid, then “*Not P’ would be valid also.
That is, it is necessary for Q to be valid in order for P to be valid.



