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Preface

The homotopy is a fundamental concept in topology, which can be traced
back to Jules Henri Poincaré (1854-1912), a French mathematician. Based
on the homotopy, two methods have been developed. One is the homotopy
continuation method dating back to 1930s, which is a global convergent
numerical method mainly for nonlinear algebraic equations. The other is
the homotopy analysis method (HAM) proposed in 1990s by Shijun Liao,
the editor of this book, which is an analytic approximation method with
guarantee of convergence, mainly for nonlinear differential equations.

Different from perturbation techniques which are strongly dependent
upon small/large physical parameters (i.e. perturbation quantities), the
HAM has nothing to do with any small/large physical parameters at all.
Besides, many analytic approximation methods, such as “Lyapunov artifi-
cial small parameter method”, “Adomian decomposition method” and so
on, are only special cases of the HAM. Unlike other analytic approximation
techniques, the HAM provides us great freedom and flexibility to choose
equation-type and solution expression of high-order approximation equa-
tions. Notice that “the essence of mathematics lies entirely in its freedom”,
as pointed out by Georg Cantor (1845-1918). Most importantly, different
from all of other analytic approximation methods, the HAM provides us
a convenient way to guarantee the convergence of approximation series by
means of introducing the so-called “convergence-control parameter”. In
fact, it is the convergence-control parameter that differs the HAM from all
other analytic approximation methods. As a result, the HAM is generally
valid for various types of equations with high nonlinearity, especially for
those without small/large physical parameters.

Since 1992 when the early HAM was first proposed by Liao, the HAM
has been developing greatly in theory and applied successfully to numer-
ous types of nonlinear equations in lots of different fields by scientists,
researchers, engineers and graduated students in dozens of countries. All
of these verify the originality, novelty, validity and generality of the HAM.
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So, it is necessary to describe, although briefly, the current advances of
the HAM in both theory and applications. This is the first motivation of
the book, whose chapters are contributed by the leading researchers in the
HAM coming from seven countries.

Any truly new method should give something novel and/or better. In
the past 20 years, hundreds of articles related to the HAM were published
in various fields, and some new solutions were indeed found by means of the
HAM. Thus, it is now the time to suggest some valuable but challenging
nonlinear problems to the HAM community. This is the second motivation
of the book. Some of these problems are very famous, with a long history.
Hopefully, the above-mentioned freedom and flexibility of the HAM might
create some novel ideas and inspire brave, enterprising, young researchers
with stimulated imagination to attack them with satisfactory results. I
personally believe that the applications of the HAM on these famous, chal-
lenging problems might not only indicate the great potential of the HAM,
but also lead to great modifications of the HAM in theory.

A brief review of the HAM is given in Chapter 1, with some suggested
challenging problems. The fascinating “Predictor HAM” and “Spectral
HAM?” are described in Chapters 2 and 3, respectively. Some interesting
theoretical works on the auxiliary linear operator, convergence-control pa-
rameter and convergence of approximation series are described in Chapters
4 and 5. An attractive application of the HAM about flows of nanofluid is
given in Chapter 6. A charming application of the HAM for time-fractional
boundary-value problem is illustrated in Chapter 7. The HAM-based Maple
package NOPH 1.0.2 (http://numericaltank.sjtu.edu.cn/NOPH.htm) for
periodic oscillations and limit cycles of nonlinear dynamic systems with
various applications is described in Chapter 8. The HAM-based Mathemat-
ica package BVPh 2.0 (http://numericaltank.sjtu.edu.cn/BVPh.htm)
for coupled nonlinear ordinary differential equations and its applications
are given in Chapter 9. Both of them are easy-to-use, user-friendly, and
free available online with user’s guide. They can greatly simplify some
applications of the HAM.

It is a great pity that it is impossible to describe, even briefly, the whole
advances of the HAM in theory and applications in such a book. Here, I
would like to express my sincere and truthful acknowledgements to all of
the HAM community for their great contributions to the HAM.

Shijun Liao
June 2013, Shanghai
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Chapter 1

Chance and Challenge:
A Brief Review of Homotopy Analysis Method

Shijun Liao

Shanghai Jiao Tong University, Shanghai 200240, China
sjliao@sjtu.edu.cn

A brief review of the homotopy analysis method (HAM) and some of
its current advances are described. We emphasize that the introduction
of the homotopy, a basic concept in topology, is a milestone of the an-
alytic approximation methods; since it is the homotopy which provides
us great freedom and flexibility to choose equation type and solution ex-
pression of high-order approximation equations. Besides, the so-called
“convergence-control parameter” is a milestone of the HAM, too, since it
is the convergence-control parameter that provides us a convenient way
to guarantee the convergence of solution series and that differs the HAM
from all other analytic approximation methods. Relations of the HAM
to the homotopy continuation method and other analytic approximation
techniques are briefly described. Some interesting but challenging non-
linear problems are suggested to the HAM community. As pointed out
by Georg Cantor (1845-1918), “the essence of mathematics lies entirely
in its freedom”. Hopefully, the above-mentioned freedom and great flex-
ibility of the HAM might create some novel ideas and inspire brave,
enterprising, young researchers with stimulated imagination to attack
them with satisfactory, better results.
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1.1. Background

Physical experiment, numerical simulation and analytic (approximation)
method are three mainstream tools to investigate nonlinear problems.
Without doubt, physical experiment is always the basic approach. How-
ever, physical experiments are often expensive and time-consuming. Be-
sides, models for physical experiments are often much smaller than the
original ones, but mostly it is very hard to satisfy all similarity criteri-
ons. By means of numerical methods, nonlinear equations defined in rather
complicated domain can be solved. However, it is difficult to gain numeri-
cal solutions of nonlinear problems with singularity and multiple solutions
or defined in an infinity domain. By means of analytic (approximation)
methods, one can investigate nonlinear problems with singularity and mul-
tiple solutions in an infinity interval, but equations should be defined in
a simple enough domain. So, physical experiments, numerical simulations
and analytic (approximation) methods have their inherent advantages and
disadvantages. Therefore, each of them is important and useful for us to
better understand nonlinear problems in science and engineering.

In general, exact, closed-form solutions of nonlinear equations are hardly
obtained. Perturbation techniques [1-4] are widely used to gain analytic
approximations of nonlinear equations. Using perturbation methods, many
nonlinear equations are successfully solved, and lots of nonlinear phenom-
ena are understood better. Without doubt, perturbation methods make
great contribution to the development of nonlinear science. Perturbation
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methods are mostly based on small (or large) physical parameters, called
perturbation quantity. Using small/large physical parameters, perturba-
tion methods transfer a nonlinear equation into an infinite number of sub-
problems that are mostly linear. Unfortunately, many nonlinear equations
do not contain such kind of perturbation quantities at all. More impor-
tantly, perturbation approximations often quickly become invalid when the
so-called perturbation quantities enlarge. In addition, perturbation tech-
niques are so strongly dependent upon physical small parameters that we
have nearly no freedom to choose equation type and solution expression of
high-order approximation equations, which are often complicated and thus
difficult to solve. Due to these restrictions, perturbation methods are valid
mostly for weakly nonlinear problems in general.

On the other side, some non-perturbation methods were proposed long
ago. The so-called “Lyapunov’s artificial small-parameter method” [5] can
trace back to the famous Russian mathematician Lyapunov (1857-1918),
who first rewrote a nonlinear equation

Nlu(r,t)] = Lo[u(r,t)] + Nolu(r,t)] = f(r,1), (1.1)

where r and ¢ denote the spatial and temporal variables, u(r,¢) a unknown
function, f(r,t) a known function, £y and Ay are linear and nonlinear
operator, respectively, to such a new equation

Lolu(r,t)] + g No[u(r, t)] = f(r,1), (1.2)

where g has no physical meaning. Then, Lyapunov regarded ¢ as a small
parameter to gain perturbation approximations

+o0
umugtu q+uz @ Hus @+ =uo+ Y um g™, (L3)
m=1
and finally gained approximation
+o0o
U= ug + Zum, (1.4)
m=1
by setting ¢ = 1, where
Lolug(r,t)] = f(r,t), Lolui(r,t)] = —Noluo(r,t)],--- (1.5)

and so on. It should be emphasized that one has no freedom to choose the
linear operator Ly in Lyapunov’s artificial small-parameter method: it is
exactly the linear part of the whole left-hand side of the original equation
Nu] = f, where N' = Lo+ Np. Thus, when £ is complicated or “singular”
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(for example, it does not contain the highest derivative), it is difficult (or
even impossible) to solve the high-order approximation equation (1.5). Be-
sides, the convergence of the approximation series (1.4) is not guaranteed
in general. Even so, Lyapunov’s excellent work is a milestone of analytic
approximation methods, because it is independent of the existence of phys-
ical small parameter, even though it first regards ¢ as a “small parameter”
but finally enforces it to be 1 that is however not “small” strictly from
mathematical viewpoints.

The so-called “Adomian decomposition method” (ADM) [6-8] was de-
veloped from the 1970s to the 1990s by George Adomian, the chair of the
Center for Applied Mathematics at the University of Georgia, USA. Ado-
mian rewrote (1.1) in the form

Nlu(r, t)] = Lalu(r, t)] + Nau(r,t)] = f(r,t), (1.6)

where £ 4 often corresponds to the highest derivative of the equation under
consideration, N4 [u(r,t)] gives the left part, respectively. Approximations
of the ADM are also given by (1.4), too, where

Lalug(r,t)] = f(r,t), Lalum(r,t)] = —An_1(r,t), m>1, (1.7)
with the so-called Adomial polynomial

1 ak +o0
Ag(r,t) = ] {a—quA [Z un(r,t) ¢"

n=0

(1.8)

q=0

Since the linear operator £ 4 is simply the highest derivative of the consid-
ered equation, it is convenient to solve the high-order approximation equa-
tions (1.7). This is an advantage of the ADM, compared to “Lyapunov’s
artificial small-parameter method” [5]. However, the ADM does not pro-
vides us freedom to choose the linear operator £ 4, which is restricted to be
related only to the highest derivative. Besides, like “Lyapunov’s artificial
small-parameter method” [5], the convergence of the approximation series
(1.4) given by the ADM is still not guaranteed.

Essentially, both of the “Lyapunov’s artificial small parameter method”
and the “Adomian decomposition method” transfer a nonlinear problem
into an infinite number of linear sub-problems, without small physical pa-
rameter. However, they have two fundamental restrictions. First, one has
no freedom and flexibility to choose the linear operators Ly or L 4, since Ly
is exactly the linear part of N and £ 4 corresponds to the highest derivative,
respectively. Second, there is no way to guarantee the convergence of the
approximation series (1.4). The second ones is more serious, since divergent
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approximations are mostly useless. Thus, like perturbation methods, the
traditional non-perturbation methods (such as Lyapunov’s artificial small
parameter method and the ADM) are often valid for weakly nonlinear prob-
lems in most cases.

In theory, it is very valuable to develop a new kind of analytic approxi-
mation method which should have the following characteristics:

(1) it is independent of small physical parameter;

(2) it provides us great freedom and flezibility to choose the equation-type
and solution expression of high-order approximation equations;

(3) it provides us a convenient way to guarantee the convergence of approx-
imation series.

One of such kind of analytic approximation methods, namely the “homo-
topy analysis method” (HAM) [9-17], was developed by Shijun Liao from
1990s to 2010s, together with contributions of many other researchers in
theory and applications. The basic ideas of the HAM with its brief history
are described below.

1.2. A brief history of the HAM

The basic ideas of “Lyapunov’s artificial small-parameter method” can be
generalized in the frame of the homotopy, a fundamental concept of topol-
ogy. For a nonlinear equation

Nu(r,t)] = f(r,t), (1.9)

Liao [9] propose the so-called “homotopy analysis method” (HAM) by using
the homotopy, a basic concept in topology:

(1—q)Lp(r, t;q) —uo(r,t)] = co ¢ H(r,t) {Np(r,t;q)] — f(r, 1)}, (1.10)

where £ is an auxiliary linear operator with the property £[0] = 0, N is
the nonlinear operator related to the original equation (1.9), ¢ € [0,1] is
the embedding parameter in topology (called the homotopy parameter),
o(r,t;q) is the solution of (1.10) for ¢ € [0,1], up(r,t) is an initial guess,
co # 0 is the so-called “convergence-control parameter”, and H(r,t) is an
auxiliary function that is non-zero almost everywhere, respectively. Note
that, in the frame of the homotopy, we have great freedom to choose the
auxiliary linear operator L, the initial guess ug(r,t) , the auxiliary function
H(r,t), and the value of the convergence-control parameter cg.
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When ¢ = 0, due to the property £[0] = 0, we have from (1.10) the
solution

¢(r, t;0) = ug(r, t). (1.11)

When g = 1, since ¢y # 0 and H(r,t) # 0 almost everywhere, Eq. (1.10) is
equivalent to the original nonlinear equation (1.9) so that we have

p(r,t;1) = u(r, t), (1.12)

where u(r, t) is the solution of the original equation (1.9). Thus, as the ho-
motopy parameter g increases from 0 to 1, the solution ¢(r, ¢; ¢) of Eq. (1.10)
varies (or deforms) continuously from the initial guess ug(r,t) to the solu-
tion u(r,t) of the original equation (1.9). For this sake, Eq. (1.10) is called
the zeroth-order deformation equation.

Here, it must be emphasized once again that we have great freedom and
flexibility to choose the auxiliary linear operator £, the auxiliary function
H(r,t), and especially the value of the convergence control parameter ¢y in
the zeroth-order deformation equation (1.10). In other words, the solution
@(r, t; q) of the zeroth-order deformation equation (1.10) is also dependent
upon all* of the auxiliary linear operator £, the auxiliary function H(r,t)
and the convergence-control parameter ¢y as a whole, even though they
have no physical meanings. This is a key point of the HAM, which we will
discuss in details later. Assume that £, H(r,t) and ¢y are properly chosen so
that the solution ¢(r,?; q) of the zeroth-order deformation equation (1.10)
always exists for g € (0,1) and besides it is analytic at ¢ = 0, and that the
Maclaurin series of ¢(r,t; q) with respect to g, i.e.

+o0
p(r,t; q) = uo(r,t) + ) um(r,t) g™ (1.13)

m=1

converges at ¢ = 1. Then, due to (1.12), we have the approximation series
40

u(r,t) = uo(r,t) + Z U (1, ). (1.14)
m=1

Substituting the series (1.13) into the zeroth-order deformation equation
(1.10) and equating the like-power of ¢, we have the high-order approxima-
tion equations for u,,(r,t), called the mth-order deformation equation

Lty (r,t) — XmUm—-1(r,t)] = co H(r,t) Rpm—1(r,t), (1.15)

*More strictly, ¢(r,t; q) should be replaced by ¢(r,¢; ¢, L,H(r,t),co). Only for the sake
of simplicity, we use here ¢(r,t; q), but should always keep this point in mind.
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where
1 [ ok =
Ri(r,t) = 154 g% (N Z(r,t) ¢"| - f(r,t) : (1.16)
n=0 q=0
with the definition
0, when k <1,
Xk = { 1, when k& > 2. (1.17)

For various types of nonlinear equations, it is easy and straightforward to
use the theorems proved in Chapter 4 of Liao’s book [11] to calculate the
term Ry(r,t) of the high-order deformation equation (1.15).

It should be emphasized that the HAM provides us great freedom and
flexibility to choose the auxiliary linear operator £ and the initial guess ug.
Thus, different from all other analytic methods, the HAM provides us great
freedom and flexibility to choose the equation type and solution expression
of the high-order deformation equation (1.15) so that its solution can be of-
ten gained without great difficulty. Notice that “the essence of mathematics
lies entirely in its freedom”, as pointed out by Georg Cantor (1845-1918).
More importantly, the high-order deformation equation (1.15) contains the
convergence-control parameter cg, and the HAM provides great freedom
to choose the value of ¢y. Mathematically, it has been proved that the
convergence-control parameter ¢y can adjust and control the convergence
region and ratio of the approximation series (1.14). For details, please refer
to Liao [10, 12, 13] and especially § 5.2 to § 5.4 of his book [11]. So, unlike all
other analytic approximation methods, the convergence-control parameter
co of the HAM provides us a convenient way to guarantee the convergence
of the approximation series (1.14). In fact, it is the convergence-control
parameter c¢o that differs the HAM from all other analytic methods.

At the mth-order of approximation, the optimal value of the
convergence-control parameter c¢g can be determined by the minimum of
residual square of the original governing equation, i.e.

A&,
Teo 0, (1.18)

where

m 2
5m:/Q{N L;)un(r,t)] —f(r,t)} Q. (1.19)

Besides, it has been proved by Liao [16] that a homotopy series solution
(1.14) must be one of solutions of considered equation, as long as it is
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convergent. In other words, for an arbitrary convergence-control parameter
co € R, where

m—++oQ

R, = {(:0 : lim o &, (co) — 0} (1.20)

is an interval, the solution series (1.14) is convergent to the true solution
of the original equation (1.9). For details, please refer to Liao [16] and
Chapter 3 of his book [11].

In summary, the HAM has the following advantages:

(a) it is independent of any small/large physical parameters;

(b) it provides us great freedom and large flexibility to choose equation type
and solution expression of linear high-order approximation equations;

(c) it provides us a convenient way to guarantee the convergence of approx-
imation series.

In this way, nearly all restrictions and limitations of the traditional
non-perturbation methods (such as Lyapunov’s artificial small parameter
method [5], the Adomian decomposition method [6-8], the J-expansion
method [18] and so on) can be overcome by means of the HAM.

Besides, it has been generally proved [10, 12, 13] that the Lyapunov’s
artificial small parameter method [5], the Adomian decomposition method
[6-8] and the -expansion method [18] are only special cases of the HAM for
some specially chosen auxiliary linear operator £ and convergence-control
parameter cg. Especially, the so-called “homotopy perturbation method”
(HPM) [19] proposed by Jihuan He in 1998 (six years later after Liao [9]
proposed the early HAM in 1992) was only a special case of the HAM
when ¢g = —1, and thus has “nothing new except its name” [20]. Some
results given by the HPM are divergent even in the whole interval except
the given initial/boundary conditions, and thus “it is very important to
investigate the convergence of approximation series, otherwise one might
get useless results”, as pointed out by Liang and Jeffrey [21]. For details,
see § 6.2 of Liao’s book [11]. Thus, the HAM is more general in theory and
widely valid in practice for more of nonlinear problems than other analytic
approximation techniques.

In calculus, the famous Euler transform is often used to accelerate con-
vergence of a series or to make a divergent series convergent. It is inter-
esting that one can derive the Euler transform in the frame of the HAM,
and give a similar but more general transform (called the generalized Euler
transform), as shown in Chapter 5 of Liao’s book [11]. This provides us a



