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Foreword

For a sufficiently educated person, the word “algebra” often reminds him or her a great deal
of high school mathematics, such like factorization of quadratic polynomials, solving an
equation or a system of equations, exponential functions, logarithmic functions and so forth.
These subjects are known as precalculus algebra or elementary algebra.

This course is quite beyond the precalculus algebra. It emphasizes the inner structures of
groups, rings, fields and vector spaces as well as the maps between algebraic structures. For
this reason this branch of mathematics is often referred to as “abstract algebra” or “modern
algebra”. The ideas of algebra evolved through many generations of mathematicians around
the turn of 20th century. Among many prominent mathematicians we mention Emmy Noether
and Emil Artin, who laid the foundation of modern algebra.

In the freshmen linear algebra, the students have encountered the algebraic structure of
vector spaces over real number field or complex number field, as well as the structures of
Euclidean spaces or unitary spaces after the introduction of inner product. If we look at
the set of integers and the set of real polynomials in one variable closely, we may find their
properties strikingly similar. From the algebraic point of view, their structures share many
common properties. Roughly speaking, a so-called algebraic structure is a set with one or
more operations satisfying certain conditions. This is one of the basic target of study in
mathematics. Another important basic structure is topological structure, which is not in the
scope of this course. The development of mathematics in the recent century has confirmed
that modern algebra is indispensable.

Due to its importance, modern algebra (or abstract algebra) has become a basic standard
course for math major students, usually offered for sophomores or juniors. An ideal duration
of the course is one whole year. In recent years, only one semester of modern algebra is
available for many major universities of China. It is not easy for instructors of this course
to cover Galois theory in one semester. But Galois theory is recognized as a milestone of
algebra. It will be regretful if a student does not know Galois theory after taking the course
of algebra. Through many years of teaching the author has made careful selection of the
materials for groups, rings and fields so that the students can reach the main theorem of
Galois theory and the proof of the insolvability by radicals of equations of degrees greater
than four.

Among all algebraic structures, the group is a basic structure. To shorten the first chapter
on groups, I postpone some less fundamental but more technical subjects such like Sylow
groups, finitely generated abelian groups and solvable groups to a later chapter. The first
three chapters aim at basic knowledge on groups, rings and fields. For ring theory, emphasis
is put on the residue ring Z /nZ and polynomial rings, of one variable and of several variables.
Through these concrete rings students can understand more abstract concepts such like prin-
cipal ideal domain and unique factorization ring. The non-commutative rings are restricted
to basic knowledge and a few standard examples such like matrix rings and quaternions.

Chapter 4 is a brief account of linear algebra over an arbitrary field. Since the students are
assumed to have taken the first course of linear algebra already, the account is often sketchy.
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The main purpose of this chapter is to emphasize the difference of vector spaces over fields
of different characteristics and prepare for the theory of extensions of fields. Students should
establish a point of view to regard the extension of a field as a vector space over the base field.

Chapter 5 covers Sylow groups, finitely generate abelian groups and solvable groups as
I mentioned before. The last three chapters are devoted to the field theory exclusively. By
author’s experience, it is reasonable to finish all eight chapters in 15 or 16 weeks.

The appendices are for more enthusiastic students. A proof of quadratic reciprocity law
displays elegant techniques of finite fields. The proof of the theorem concerning the structure
of finite skew fields displays a clever use of group actions. The proofs of these two theo-
rems are adapted from the ones of J.-P. Serre and A.Weil respectively. The author wishes
that the interested readers can feel the beauty of a mathematical proof by reading these two
appendices.

Due to the limit of time, in the last section only the insolvability of equations of degree
greater than four is proved. Using Galois theory to deduce the formulas for the solutions of
cubic and quartic equations are put in appendices.

The sections marked with an asterisk can be skipped on the first reading.

There are adequate amount of exercises throughout the book. The degree of difficulty
varies. Some exercises are chosen from Ph.D qualifying exams. Hints or solutions are pro-
vided as an appendix. Most problems have many different proofs, which are impossible to
be included. Students are strongly encouraged to find their own solutions and do not rely on
the appendix too heavily. Only by laying one’s own hand on hard problems, one can feel the
charm of mathematical deduction.

In summary, the author has tried to give a concise and easy to understand account of basic
knowledge and methods in algebra without loss of rigor. The main perspective readers are
sophomores or juniors of math major.

Professor Li Kezheng offered many valuable comments and pointed out many mistakes.
Many students of Fudan University who have taken this course in the past several years have
provided useful comments too. I regret that I am not able to list their names. I thank all those
people who have made contributions to this book. The assistance of Ms. Yao Lili of Science
Press in the publication of this book is greatly appreciated.

J.-G. Yang,



Preliminaries and Notations

Since this course is intended for the undergraduate students in math major, we assume that
the readers have already studied linear algebra and calculus (at least calculus in one variable).
The readers are assumed to have the basic knowledge on sets and maps.

Some conventions and notations are given below.

A map f from one set S to another set 7" is an injection if f(z) # f(y) wherever z and
y are two distinct elements in S. The map f is a surjection if there exists x € S such that
f(z) = z forevery z € T. A map is a bijection if it is injective and surjective. Let U be a
subset of S. Denote by f| the restriction of f on U.

A map f from S to T carrying z to z is denoted by f : § — T,z — z. For example
x +— e” is the exponential function. Sometimes the identity map from a set S into itself is
denoted by id or 1.

Let f be a map from S to 7" and g be a map from 7T to U. Themap go f : S — U,z —
g(f(z)) is the composite of f and g. It can also be denoted by g f.

A subset of a set S is often defined by the notation {z € S|P}, where P is the condition
that z should satisfy. For example {z € R|0 < 2 < 1} is the closed interval [0, 1]. The union
and the intersection of sets are denoted by U and N respectively. The difference {z € A|z ¢
B} of the sets A and B is denoted by A — B or A\ B, and we prefer to use the latter. A
set with a few elements is usually denote by {-- -}, in which - - - is the list of all elements.
For example {a} is a set consisting of a single element a, {0,1} is the set consisting of the
elements 0 and 1. The empty set is denoted by (). ‘

The knowledge of equivalence relations and equivalence classes is helpful, but is not
indispensable. We will explain them when they are first used in the text.

Readers are required to know the number fields well. By definition, a number field is
a subset of the complex number field closed under addition, subtraction, multiplication and
division. The most frequently used number fields are complex number field, real number field
and rational number field.

The equality z = +a means that z is equal to either a or —a.

Some common notations are listed as follows:
— set of natural numbers
— set of integers

set of rational numbers

— set of real numbers

— set of complex numbers

ARONZ
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Chapter 1

Elements of Groups

Many objects we encounter in mathematics are sets equipped with one or more operations.
Such objects are usually called algebraic structures. In this course the algebraic structures
we will study include groups, rings and vector spaces. In terms of the number of operations
the group theory can be considered to be a natural starting point for this course, since a group
involves only one basic operation. In this chapter the definition, basic properties of groups
and homomorphisms between groups will be explained. More advanced topics on groups
will be covered in later chapters.

1.1 Definitions and Examples

Let S be a set. Denote the Cartesian product of S with itself by S x S. It consists of all pairs
(a,b) with a,b € S. Note that (a,b) and (b, a) are different elements in S x S ifa # b. A
map f from the set S x S to S is called a (binary) operation.

For example, let S be the set of all real numbers. Defined the map f : S x S — S
by f(a,b) = a + b. Then f is a binary operation. We may use all sorts of ways to define
operations such as f(a,b) = a® + b3, f(a,b) = ab,....

Since it is awkward to use the notation f(a, b) for an operation, there are more convenient
notations such as a + b, [A, B],u x v,..., depending on occasions. The simplest notation
is ab. We will use this notation when no confusion will be caused. In practice, it is better to
use the notations that we are already familiar with. For instance, the addition of numbers is
denoted by “+”, the cross product of two vectors in R? is denoted by “x”.

Let’s look at some more examples.

(1) Let S be a 3-dimensional Euclidean space. The addition u + v and cross product
u x v are binary operations. The dot product u - v is not a binary operation since the result
of the dot product is not a vector.

(2) Let S be the set of all n x n matrices. Then A+ B, AB, AB — B A are three different
operations on S (the last one is a basic operation in Lie Algebra).

(3) Let S be the set of all everywhere well-defined real functions. Then the composite
f o gis abinary operation on S.

Unitary operations (involving one variable) appear quite often too, such as —a (the nega-
tive of a number), a? (the square of a number), @ (the conjugate of a complex number), AT
(the transpose of a square matrix), etc..

We say that a binary operation f on a set S satisfies the law of associativity if

f(av f(b,C)) = f(f(a,,b),c)

holds for any a, b, ¢ € S. By our convention this condition can be written simply as
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a(be) = (ab)e,

which is exactly the form we are familiar with.

In the previous examples many binary operations satisfy the law of associativity. The
cross product of vectors and the operation AB — B A for square matrices A, B do not satisfy
the law of associativity. It is easy to verify that the operation f(a,b) = a® + b3 on real
numbers does not satisfy the law of associativity.

An element e in a set S equipped with a binary operation is called an identity element if
ea =ae = aforanya € S.

Examples:

(1) 0 is an identity element in the set of real numbers under addition.

(2) 1 is an identity element in the set of real numbers under multiplication.

(3) The identity matrix [, is an identity element in the set of n X n matrices under multi-
plication.

Proposition 1.1.1 A ser S with a binary operation has at most one identity element.

Proof Leteand e’ be two identity elements of S. Since e is an identity element, ee’ = ¢’

holds. On the other hand, ee’ = e holds since ¢’ is also an identity element. Therefore
r /

e=ee =e'. O

Definition 1.1.1 A nonempty set .S with a binary operation is called a semigroup if
the law of associativity is satisfied. A semigroup containing an identity element is called a
monoid.

According to Proposition 1.1.1 there is a unique identity element in a monoid.

Example 1.1.1  The set of natural numbers under addition is a semigroup but not a
monoid.

Definition 1.1.2 Let a be an element in a monoid S and let e be the identity element of
S. If there is an element b € S such that ba = ab = e, then a is called an invertible element
and b is called the inverse of a.

Note that the article in front of the word “inverse” is “‘the” instead of “an”. This will be
justified by the following proposition.

Proposition 1.1.2  There is a unique inverse for an invertible element in a monoid.
Proof Let b, b’ be inverses of a. Then b = be = b(ab’) = (ba)b/ =eb’ =V'. O

It is obvious that the relation “inverse” is symmetric. That is to say, if a is invertible with
b as its inverse, then b is also invertible and a is the inverse of b.
The inverse of an invertible element a is commonly denoted by a~!.

Definition 1.1.3 A nonempty set G with a binary operation is defined to be a group if
the following three conditions are satisfied:

(1) The law of associativity is satisfied;

(2) The identity element exists;

(3) Every element in G is invertible.
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The first two conditions in the definition mean that every group is a monoid. Although
the concepts of semigroup and monoid are more general than group, but we are primarily
interested in groups.

The unitary operation @ — a~ " in a group is called the inverse operation. Since it is
totally determined by the binary operation of the group, we do not consider the inverse as a
basic operation of the group.

As we have mentioned before, the binary operation in a group uses different notations
depending on occasions. The default notation is ab, or a - b occasionally. For this reason, the
operation can also be referred to as “multiplication” and ab is called the product of a and b.
In this case the inverse of a is denoted by a~! and the identity element e can also be denoted
by 1, or 14 to avoid confusion. For a natural number 7, the n-th power a™ is defined to be the
product of a with itself n times. The power a~"™ with negative integral exponent is defined to
be (a=1)™.

Let G be a group. If ab = ba for any a,b € G, then G is called a commutative group, or
abelian group. .

For many abelian groups, the binary operation is usually called “addition” and denoted
by a + b. In this case the identity element is often called the zero (element) of the group and
denoted by 0. The inverse of an element a is denoted by —a and the n-th power of an element
a becomesna =a +--- + a.

A groups consisting of a finite number of elements is called a finite group, otherwise it
is called an infinite group. The number of elements in a group G is denoted by |G/, called
the order of G. Hence |G| is oo if G is an infinite group and |G/ is a natural number if G is
a finite group.

Let g be an element of a group G. If there is no natural number n such that g™ = 1, then
g is called an element of infinite order, otherwise, define the order of g to be the smallest
natural number n such that g™ = 1, denoted by o(g). Hence an element in G has order one if
and only if it is the identity element. By convention, o(g) = oc if g is an element of infinite
order.

1

Example 1.1.2 (1) Every number field under addition forms an abelian group, called
the additive group of that number field. One thing to keep in mind is that the multiplication
operation of that number field is neglected when it is regarded as a group, since by definition
a group involves only one basic operation.

(2) The set Z of all integers under addition is an abelian group, called the additive group
of integers.

(3) All n x n invertible matrices over a number field K under the (matrix) multiplication
is a group called general linear group and denoted by G L, (K). It is not an abelian group
whenn > 1.

(4) A number field K under multiplication is a monoid, but not a group since the element
0 is not invertible. Denote K* = K\{0}. Then K* is an abelian group under multiplication,
which is essentially the same as GL;(K). Although this group is abelian, but it would be
absurd to use “+” to denote the multiplication.

(5) Any vector space is an abelian group under addition.

(6) 3-dimensional Euclidean space R? is not a semigroup under cross product, since the
law of associativity is not valid.
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(7) The smallest group has only one element. Such a group is called a trivial group.
(8) Empty set is not a group.

Proposition 1.1.3 (law of cancelation) If the element a, b, c in a group satisfy ab = ac
or ba = ca, then b = c. :

Proof Assume that ab = ac. By left multiplying a~! to both sides of ab = ac the
equality a=*(ab) = a~'(ac) is obtained, so (a~'a)b = (a~'a)c by the law of associativity.
Hence eb = ec by the definition of inverse. Finally b = ¢ follows from the definition of the
identity element e.

The same argument shows that ba = ca implies b = c. O

Corollary 1.1.1  Let a, b be two elements of a group G.
(1)Ifab = aorba = athen b= 1g;
(2)Ifab = 1g orba = 1g thenb = a~ 1.

Proof (1) Apply the law of cancelation to ab = alg.
(2) Apply the law of cancelation to ab = aa™ 1. O

Proposition 1.1.4  Let a, b be two elements of a group G. Then (ab)™* = b~ ta™ 1.

Proof The equality (b~ 'a=')(ab) = b='(a"'a)b = b='b = 1 and Corollary 1.1.1 (2)
imply b= ta=! = (ab)~ 1. O

This property is the generalization of the well-known formula (AB)~! = B~'A~1in
linear algebra, where A and B are two invertible n x n matrices.

As we have seen, any number field is a group under addition. For this reason we may
consider addition as the first important operation of this number field. In fact, this is the first
operation taught in elementary school. The subtraction is not regarded as a basic operation.
Since a — b = a + (—b), the subtraction can be considered to be the composite of the inverse
and the addition.

Exercises 1.1

1. In the set G={a € R|a > 0, a # 1} define a binary operation a * b = a'™”. Is G a group under
this operation? Here In b is the natural logarithm of b.

2. Let A be the set of all strictly increasing continuous functions on [0, 1] satisfying f(0) =
0, f(1) = 1. For any f,g € A define fg to be the composite of f and g, i.e., (fg)(z) = f[g(z)] for
any = € [0, 1]. Prove that A is a group under this operation.

3. Let G be a semigroup satisfying the following two conditions:

(1) there is some e € G such that ea = a for any a € G;

(2) for every a € G, there is some b € G such that ba = e.

Prove that G is a group.

4. Prove that every element of a finite group has finite order.

5. Let G be a group and a, b € G. Prove that o(ab) = o(ba).

6. Assume that every element a of a group G satisfies a~' = a. Prove that G is an abelian group.

1.2 Subgroups

Definition 1.2.1 Let H be a nonempty subset of a group G satisfying the following two
conditions:
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(1) (closure under the multiplication) ab € H for any a,b € H;
(2) (closure under the inverse operation) a~! € H forany a € H.
Then H is called a subgroup of G.

By the closure of multiplication, a subgroup H of G inherits the binary operation from
G. Naturally this inherited operation preserves the law of associativity. Since H is nonempty,
there is some element a € H. Hence a~! € H by the closure of inverse operation, which
implies that 1 = a~'a € H. So H is a group by itself. The readers may compare the concept
of subgroup with that of subspace in linear algebra.

It is easy to see that any subgroup of an abelian group is abelian.

Example 1.2.1 (1) Every group G has two subgroups for free. They are {1} and G.
(They become the same if |G| = 1.) They are called trivial subgroups of G. A subgroup H
of G is called a proper subgroup if H # G.

(2) Let n be a natural number. Let nZ denote the set of all integers divisible by n. Then
nZ is a subgroup of Z.

(3)Let SL,(K) be the set of all n x n matrices with determinant one over a number field
K. 1tis a subgroup of GL,,(K), called the special linear group.

(4) The set of matrices consisting of

1 0 -1 0
0 1|° 0 -1
is a subgroup of SLy(K) with |[H| = 2.

(5) The real number field R is a group under addition and R* = R\{0} is a group under
multiplication. Although the latter is a subset of the former, but R* = R — {0} is not a
subgroup of R because the binary operations of these two groups are different.

Proposition 1.2.1 (a criterion for subgroup) Let H be a nonempty subset of a group G.
Ifab=! € H forany a,b € H, then H is a subgroup of G.

Proof Let c be an arbitrary elementin H. Then 1 = cc™! € H by the hypothesis of the
proposition. For any a € H, we havea™! = la~! € H. Hence H is closed under the inverse
operation.

Since ab = a(b~1)~! € H, H is also closed under multiplication. |

Proposition 1.2.2  Let { H; }c1 be a set (not necessarily finite) of subgroups of a group

G.Then H = ( H; is a subgroup of G.
el

Proof Sincel € () H, theset H isnotempty. Leta,b € H. Thenab~! € H; for every

i€l
i € I, since every H; is a subgroup of G. Hence ab~! € H. It follows from Proposition 1.2.1
that H is a subgroup of G. O

Definition 1.2.2  Let g be an element of a group G. The set C(g) = {a € Glag = ga}
is called the centralizer of ¢ in G. For any nonempty subset S of G, the set C(S) = {a €
Glag = ga forall g € S} is called the centralizer of S in G. In particular, C(G) is called the
center of G.
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It is easy to see that C(g) and C(S) = [) C(g) are subgroups of G and C(G) is an
geS
abelian group. The group G is abelian if and only if G = C(G).

Let S be a nonempty subset of a group G. Let (.S) denote the intersection of all subgroups
of G containing S. Then (S) is the smallest subgroup of G containing S in the sense that
(S) C H for every subgroup H of G with S C H. The subgroup () is called the subgroup
generated by S. If S is a finite set consisting of the element ay, ..., a,, then (S) can also be
denoted by (a,. .., an). If G = (S), then we say that G is generated by S.

Example 1.2.2 (1)Z = (1) = (—1).
(2) GL,(K) is generated by all n x n elementary matrices.

A group generated by a finite set is called a finitely generated group. In particular, a
group generated by a single element is called a cyclic group. For instance, Z is a cyclic
group while GL,,(K) is not. It is obvious that every cyclic group is abelian.

Let a be an element of a group G. Then (a) is a subgroup of G, called a cyclic subgroup
of G. It is easy to verify that o(a) = |(a)|. In fact, if o(a) = oo then

(@) ={...,a7 % a1 1,a,a% ..}

and if o(a) = n < oo then
(a) = {1,a,a?...,a" "}

Example 1.2.3 In GL,(K) the matrix

o 1)

generates an infinite cyclic subgroup while the matrix

1 V3
2 2
V3 1
o 2

generates a cyclic subgroup of order 3.

Proposition 1.2.3  Ler S be a nonempty subset of a group G. Then
(S) = {af'a5? - -ay*|a1,...,an € S,e1,... €0 = £1,
n is an arbitrary nonnegative integer}.

Proof First note that the elements a,as,...,a, involved in the expression are not
necessarily distinct.

Denote the set of the right hand side by 7. Then T is a subgroup containing S. Hence
(S)CT.

Let H be a subgroup of G such that S C H. By the definition of subgroup every element
that can be expressed as a{'a5® - --a& (a; € S,e; = +1)isin H. Hence T' C H. Therefore
T = (S). O
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At this point we want to determine all subgroups of Z. First of all, as we have already seen
before, 0, Z, 27, 3Z, . . . are all subgroups of Z. We show that there are no other subgroups.

Let H be a nontrivial subgroup of Z. Then there is some nonzero integer @ in H. Since
—a is also in H by the definition of subgroup, there exists a natural number in H. Let n be
the smallest natural number in H. Then nZ C H. For any m € H, there are integers ¢, r
such that m = gn + r in which O < r < n — 1. Since r = m — qgn € H, r cannot be a
natural number by the minimality of n. Hence » = 0. This implies that m € nZ. It follows
that H C nZ. Therefore every subgroup of Z is an infinite cyclic group.

Exercises 1.2

1. Let G be the set of all 3 x 3 real upper triangular matrices with all diagonal elements equal to 1.
Show that G is a group under multiplication and determine the center of G'.

2. Let X and Y be two subsets of a group G'. Prove that

(Hif X CYthenC(X) 2 C(Y);

(@) X € Cc(C(X));

(3) C(X) = C(C(C(X)))-

Here C'(X) denotes the centralizer of X.

3. Let H be a subgroup of a group G such that [ is contained in every nontrivial subgroup of G.
Prove that H is contained in the center of G.

4. An element a of a group G is called a perfect square if there exists b € G such that a = b?.
Assume that G is a cyclic group and a,b € G are not perfect squares. Show that ab is a perfect square.
Give an example to show that this statement is not true for non-cyclic groups.

5. Let H be a nonempty subset of a finite group . Show that  is a subgroup of G if ab € H for
any a,b € H.

6. Let A be an n X n real invertible matrix and let G be the set consisting of all n x n real matrices
P such that PT AP = A. Show that G is a subgroup of G L, (R). Here PT is the transpose of P.

1.3 Permutation Groups

Permutations and combinations have already been studied in high school mathematics. For
instance, 2,1,4,5,3 is a permutation (or rearrangement) of the sequence 1, 2,3,4,5. It is
known that the number of permutations of 1,2, 3,4, 5 is equal to 5! = 120.

Let’s look at the permutations from another point of view. The rearrangement 2, 1,4, 5, 3
is treated as a bijection o of the set {1, 2, 3, 4,5} into itself, which carries 1 to 2,20 1, 3 to
4,410 5 and 5 to 3. We can use the following table to specify this bijection

1 2 3 45
2 1 4 5 3|

This interpretation suggests the following definition.

Definition 1.3.1 Let n be a natural number. A bijection from the set {1,2,3,...,n}to
itself is a permutation of n objects.

As in the example, a permutation can be represented by a table

1 2 3 n
o(l) o(2) a(3) --- oa(n)
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Here the numbers 1,2, 3, ..., n do not have numerical meaning whatsoever. They are
merely convenient labels for distinct objects. Denote the set of all permutations of n objects
by S,.. Then S, contains n! (the factorial of n) elements.

Introduce a binary operation in .S, in the following way. For any 0,7 € S,, define o7
to be the composite of ¢ and 7, the map 7 followed by o. Thus o7(i) = o[7(4)] for every
i € {1,2,...,n}. Evidently this is a well-defined binary operation of the set S,.

Proposition 1.3.1  The set S,, is a group under the binary operation of composite.

Proof By the rule of composite of maps o(77) = (o7)7 holds for any o, 7,7 € S,,.
Hence the law of associativity is valid.

Let id be the identity map of {1,2,3,...,n}, i.e.,id(i) = i forevery: € {1,2,3,...,n}.
Thenidoo = g oid = ¢ forany o € S,,. Hence id is the identity element.

Since o € S, is a bijection of {1,2,...,n}, its inverse map 7 exists. It means that
oT =710 =id. O

The product of two permutations can be read off from their tables. For example,
1 2 3 4 5|1 2 3 4 5] |1 2 3 45
3154 2|2 145 3| |1 3 42 5|

1 23 457" 123465
3154 2 25143

Definition 1.3.2 A subgroup of §,, is called a permutation group. S, is called the
symmetric group of n objects.

There are two reasons for introducing permutation groups at this point. First of all, they
form a large class of very important finite groups. Secondly, many non-abelian groups can be
found in permutation groups.

Let’s look at some symmetric groups of low order. When n < 2, they are too simple to
worth studying. The first nontrivial symmetric group is Ss. Its six elements can be enumer-

ated as
12 3 1 2 3 12 3
90=11 9 3(* 91T |1 3 2" 2T |3 1 2|’
1 2 3 1 2 3 12 3
93= 13 9 1|° 94T |2 1 3" T |2 3 1|"

It is easy to verify that 0109 = 04 and 0207 = o3. Thus S3 is not abelian.

It is not hard to verify that S3 has following four nontrivial subgroups {og, o1}, {0, 03},
{00,04}, {00,02,05}. .

The relations between the subgroups of S5 can be described by Figure 1.1.

/ I \
{o0, 0’1} {ov, 0’3} {00, 04} {00,02,05}

/

Figure 1.1

{00}
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If two subgroups are directly connected by a straight line, the subgroup in the lower
position is contained in the one in the upper position. The diagram makes it easy to see the
relations of subgroups at a glance.

Serious readers may try to write all elements of Sy and as many as possible subgroups
and draw a diagram of subgroups.

You may probably notice that this two line notation for permutations is not economic.
The first line is really not necessary. To be worse, in Sg a permutation of “swapping 1 and 2”
is denoted by

1 2 3 45 6 7 8 9
2 1 3 45 6 7 8 9|’

which is hardly bearable. This suggests the following concepts.

Definition 1.3.3  Let 4;,49,...,7q be d distinct objects in {1,2,...,n}. Let o be an
element in S, such that
U(il)ziz, O’(iz) :’1:3, ey U(id) :il
and o(i) = ¢ forall i ¢ {¢1,72,...,%4}. Then o is called a d-cycle, denoted by (i142 - - -iq).

The notation of a cycle is not unique. For instance, (iaig---i4i1) and (iyiq - - -i4) are the
same cycle. Two cycles are called disjoint if every object in the first cycle does not appear in
the second one. For instance, (142) and (36) are disjoint while (261) and (3245) are not.

A 2-cycle is called a transposition.

It is not hard to see that every permutation can be expressed as the product of mutually
disjoint cycles. For example,

[1‘23456

35 6 4 2 1| (136)(52)

Although the cycle notation is not as straightforward as the table notation, we will soon
see that in some occasions it is indispensable. One thing we should mention is: (135)(52)
can denote an element in S as well as an element in any S,, with n > 5. This ambiguity is
tolerable, since the value of n is usually clear from the context.

The multiplication of two permutations under the cycle notation can be accomplished by
changing them into the table notion first. This is not necessary. One may use his (or her)
favorite method to write out the result directly from the cycle notation. For example, let
o = (152)(34), 7 = (35)(41). Then o7 = (152)(34)(35)(41) = (132)(45).

Proposition 1.3.2  Every permutation can be written as the product of transpositions,
not necessarily disjoint.

Proof It suffices to show that every cycle can be written as the product of some trans-
positions.
It is easy to verify that (iliz e ’id) = (ilig)(izig) vee (’id_Q’id_l)(id_ 1id). O

Let o € .S,,. Let r be the number of elements in the set
{G,H1<i<ji<g<no@@)>ac(j)}

In other words, r is the number of pairs out of order in the sequence o(1),0(2),--- ,0(n).



