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Unified Field Theory (circa 1950)

All the measurements are in a 4D coordinate system.
A(x1, %3, %3, x4) = energy density field
e = unit vector in the observed direction (dA/ds = 0)

A=Ae= energy density field vector, (dA/ ds) = force density
S = mechanical force density, T = electrical force density
A = 4 x 4 matrix of curls of A
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Governing equations for the energy density field
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Preface

The unified field theory is a unified development of macrophysics. The
development is based on four-dimensional geometry. Historically, the study of
the mathematical structure of four-dimensional geometry led to the study of
mathematical structures for microphysical phenomena, to attempts at grand
unification (unification of the micro, macro, and celestial scales) and to the
development of higher-dimensional mathematical structures not necessarily
applied to physical phenomena. Research that was once a major interest of the
theoretical physicist passed to the differential geometer, who has since built a
strong mathematical foundation in hyper-dimensional field theories.

Today, a growing number of scientific investigations deal with intricate
interdisciplinary problems at the macroscale. Consequently, the unified field
theory has become relevant to the engineer and the applied scientist, not just to
the differential geometer and other specialists. The purpose of this monograph
was to translate the unified field theory into a language suitable for the broader
engineering and scientific community.

Translating the unified field theory into the language of the scientist involved
limiting the level of mathematics to calculus and vector algebra, and removing
reliance on mathematical theorems and concepts that the scientist would not
be aware of or that would require too much time to learn. It is also helpful
to appreciate that the development is not a uniquely ordered set of theorems.
There are a variety of ways to arrive at the results. Hence, translating the theory
into the scientist’s language involved redoing mathematical developments.
Finally, it should be recognized that the scientist’'s demands are somewhat
different from the differential geometer’s demands. The scientist does not
tend to be satisfied with a rigorous axiomatic development, instead, looks for
the development to be intuitive as well as rigorous. For example, the differential
geometer is likely satisfied with a development that begins with a 4D geometry
in which 4D vectors satisfy a standard L, norm. This may not mean anything to
the scientist. In the scientist’s language, the quantities in the 4D space satisfy
the Pythagorean theorem. But the scientist also asks, when introducing the
fourth coordinate (time), why the Pythagorean Theorem would still apply. The
scientist seeks motivating explanations that are grounded in intuitive ideas

Unified Field Theory for the Engineer and the Applied Scientist. Larry Silverberg
© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40788-0



X

Preface

related to the conventions that have been established. It is not enough that a
mathematical structure works.

Chapter 1 describes the 4D space. The focus is on the conventions that are
accepted in geometry and the rationale used to extend 3D geometry to 4D
geometry. Chapter 2 develops the theory of relativity from 4D geometry. Special
attention is given to the relationship between geometric time, conventional
time, and time measurement. Chapter 3 introduces the 4D field concept. The
principle field considered is the energy density field. The energy density field
is the field that unifies relativity, electrodynamics, and mechanics. Chapter 4
broadens our look at fields. It focuses on studying the basic ways that
the energy density field can change. Chapter 5 develops the equations that
govern the energy density field vector. It is explained why prediction can
be regarded as an extrapolation process. Chapter 6 shows that the energy
field density vector is essentially a 4D wave. The rectangular wave and the
spherical wave are considered in some detail. Chapter 7 develops the field
particle. The field particle, as described in this chapter, doubles as a wave. It
is used as a building block for constructing the energy density field vector.
Chapter 8 applies the unified field theory to electrodynamics. This chapter
derives Maxwell’s equations for free space, the concept of a medium, and the
Lorentz force. Chapter 9 applies the unified field theory to mechanics. The
principles of particle interaction are developed. Newton’s second and third laws
are derived, gravitation is developed, and then the concept of relativistic mass
is discussed. Finally, the monograph ends with an essay about the evolution
of science, the purpose being to place the unified field theory in the context of
the development of science.

Raleigh, October 2008 Larry Silverberg
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1
4D Space

“A powerful theory is simple.”

A powerful theory is simple. The simpler, the more powerful it becomes. The
unified field theory starts with conventions that are accepted about the simplest
and most basic aspects of observation. The space within which observations are
made is just about as basic as you get. This chapter scrutinizes the convention
of 4D space and develops some mathematical tools.

1.1
Convention

A point in ordinary 3D space is located by three independent coordinates. The
distance between any two points is determined by the Pythagorean theorem.
In an ordinary 4D space the added dimension is geometric time and the
Pythagorean theorem is made to work in four dimensions.

Actually, there is the possibility of adopting any number of different
geometries. For example, imagine a planar geometry that lies on the surface of
a sphere. In this geometry, straight lines are arcs produced from intersections
between the surface of the sphere and flat planes that cut through the center
of the sphere. This particular geometry is called a 2D spherical geometry. And
there are others, too, although there is no need here to delve into them. Suffice
it to point out that the geometry that is adopted depends on the problem
being studied. It is really your decision as to the geometry in which to imagine
reality. In other words, no single geometry is correct. On the other hand, say
that you want to establish a “universal” geometry, in other words, a geometry
that everyone prefers. Then, you would have to go out and persuade everyone
to accept it. It is not the goal in this monograph to claim that the ordinary 4D
geometry being used is universal. It is simply the one that was selected. It was
selected by and large because it is easy and familiar.

Let us now begin the development. Imagine that you are at the beach
watching a sun set. You would probably be willing to agree that at any given
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1 4D Space

instant, the sun is located somewhere. This, of course, cannot be proven. The
sun could be a hallucination or some other kind of figment of the imagination.
Unless you accept certain rules about the things you observe, and unless the
rest of us agree to accept these rules, it would be hopeless to proceed further. It
follows that a community of like-minded people are required to agree that the
things seen are located in the three dimensions of space and in the dimension
of time. Indeed, the practice of interpreting everything as being located in
the four dimensions of space and time is arguably the most basic convention
established for the backdrop of reality. For now, suffice it to accept that space
has three dimensions and time is another dimension. In this chapter the three
dimensions of space and the dimension of time will be brought together to
produce the 4D space.

The establishment of conventions is an evolutionary process that dates back
to before recorded history. Today, only the results are being practiced. But at
some point, conventions were established for a unit measurement of length
and for a unit measurement of time. To establish these conventions, devices
were manufactured to count multiples and fractions of units. The ruler and the
clock were built to measure length and time. The spatial measurement is taken
by placing the ruler up against a body and comparing a pair of coincident
events on the body and the ruler. Similarly, the temporal measurement is
taken by comparing a pair of coincident events. The ruler and the clock provide
physical standards for measurement.?

The idea of dimension is more recent, dating back some 500 years when
an organized method was developed to coordinate or analyze measurements.
The coordination method starts with the construction of a coordinate system.
The coordinate system is a reference relative to which measurements are
taken. The reference defines the starting point of a set of measurements
and the directions along which they are taken. The most common type of
coordinate system is called the Cartesian coordinate system, named after Renee
Descartes [2]. Using a Cartesian coordinate system, measurements are taken
in perpendicular directions.

1.2
Cartesian Coordinates

The location of the sun, or of any other event, is determined by four numbers.
Three of them are referred to as the spatial coordinates x4, x;, and x3 and
one is the temporal coordinate x4. The four numbers can be viewed as
measurements along the axes of a four-dimensional coordinate system. Each

1) It is fascinating, although beyond the scope events that are taken to have the same pe-
of this work, that these conventions pro- riod throughout time. We are so accustomed
duce, quite arbitrarily, spatial and temporal to these constants that they appear to be nat-
constants. The ruler takes the unit mea- ural even though they are really artificially
surement of distance to be the same every- constructed. In mathematics, this is called

where in space and the clock counts periodic congruence [1].



1.2 Cartesian Coordinates

axis is a dimension of 4D space. The four numbers collected together form the
vector x = (x1 %2 X3 x4). Whenever a measurement is taken along a direction
thatis not along one of the coordinate axes, a rule for the length of a
measurement is needed. Drawing from the Pythagorean theorem, the length
of the vector x is (see Figure 1.1)

X = /%2 + %% + x5 + x5 (1.1)

Equation (1.1) is developed in detail in Figure 1.1. Figure 1.1a shows a proof
of the Pythagorean theorem. Figure 1.1b extends the definition of length to
3D space. Figure 1.1c extends the definition of length to 4D space. Notice that
length is extended from 2D space to 3D space the same way it is extended
from 3D space to 4D space. A 4D geometry that defines length according to
Equation (1.1) is referred to as an ordinary geometry.?) ‘
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Figure 1.1 Length. (a) Proof of the Pythagorean theorem, (b) extension from 2D space to
3D space, and (c) extension from 3D space to 4D space.

2) A 4D geometry in which length is defined geometry is based on the works of Euclid [3].
according to Equation (1.1) is also referred Basic theorems in 4D geometry date back to
to as a 4D Euclidean geometry. Euclidean the Greeks [4].
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1 4D Space

The proof of the Pythagorean theorem for 4D geometry treated the spatial
coordinates and the temporal coordinate in the same manner, as though
there is no real difference between them. But does that make sense? What
assumptions did we make? To answer these questions, look at this proof more
closely. Notice, to prove the Pythagorean theorem, that the area of a rectangle
was first defined as the product of its sides. A notion of area was considered
necessary to define length.

Area is basically defined as the number of unit squares in a rectangle. The
Pythagorean theorem holds in a geometry in which area is defined this way.
The reader should appreciate that there are other senses of length that are
meaningful, too, although these senses of length would either not define area
this way, or not define it at all. For example, imagine constructing a space
from a grid of lines (see Figure 1.2). The distances between the lines can be
infinitesimal or finite. It is fun to think of the lines as roads and the space
as a city block. When traveling from A to B the length of travel is a + b, not
~/a? 4+ b?. This is another acceptable way to measure length even though it is
not being adopted here. :

Returning to the problem at hand, the question remains why must area
be defined as the product of base and height when one of the coordinates is
spatial and the other is temporal? In fact, is it even necessary to define area
when one of the coordinates is temporal? And if so, how would we know
whether this fourth coordinate is conventional time? The answer is that area
would not necessarily be defined this way and that this definition of length
does not necessarily make sense when one of the coordinates is temporal.
Indeed, one should not view the temporal coordinate x, and conventional
time t as identical. In the development below, the temporal coordinate x4 is
called geometric time and ¢ is called conventional time. The temporal coordinate
will be taken to be a fourth coordinate in an ordinary geometry, that is, a
geometry that satisfies the Pythagorean theorem. However, the justification
is predicated on the existence of a relationship between geometric time x4
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1.3 Time as a Fourth Dimension

and conventional time t, which will be developed shortly. From the outset, it
should be understood that the immediate goal is to develop, as a convention, an
ordinary 4D geometry with x, as the temporal coordinate. The basic question
is whether there exists a relationship between x, and ¢t and what it is.®

1.3
Time as a Fourth Dimension

To develop the relationship between geometric time x4 and conventional time
t, we need to think more about how time is measured. Do we really know
when an event actually occurs? Do we measure it directly and, if not, what do
we actually measure? The development below is divided into three steps. In
the first step, the relationship between conventional time and the images that
we see is discussed. This step clarifies the difference between the time of a
measurement and the time of an event. In the second step, the concept of the
complex number is reviewed. The complex number is reviewed because of its
central role and because there is a lot of confusion surrounding it. The aim of
the review is also, in part, to trace the complex number back to its origin, so
that this part of the development can be as intuitive as the rest. Finally, in the
third step, the relationship between x, and t is exposed.

1.3.1
Images

Imagine that it is a clear night and you gaze up and see thousands of stars.
The stars appear to be on the surface of a sphere, equidistant from you. In
fact, this is precisely the sensation replicated in a planetarium, where stars
are projected onto a spherical surface. But do the stars in the sky really lie
on a spherical surface? The spatial image that you see is really of events that
occurred at very different times, in some cases thousands of years apart, at
very different distances.

Now, look down at your hand. The spatial image that you construct of it
is formed from events that occurred almost simultaneously. It follows that
depth perception and the images of the bodies that are formed in our minds
are largely a result of relative spatial information. Spatial images of bodies are
perceived by following changes in patterns. Without these patterns, our minds
place the spatial images at equal distances to us to form images on a sphere.

When an event occurs, it takes time for the signal of the event to be
communicated to your eye or to a clock. Time is counted in terms of the signal

3) The relationship between x4 and t was the measured corresponds to the instant the signal
principle question answered in the theory of reaches the clock and not when the event actu-
relativity. It was first studied soon after light ally occurs [5]. The measured time was called
was recognized to be a wave, upon which it was retarded time. The theory of relativity provides

realized that the time during which an event is a means for accounting for retarded time.
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E o Figure 1.3 The communication line.
t=0 t t’
ct r
ct’

that reaches you. In fact, you do not know precisely where the signal comes
from or the precise instant it occurs because events at different distances and
at different instances can reach you at the same time. This is illustrated by the
communication line shown in Figure 1.3.

The origin of the communication line is at time ¢t = 0. An event E occurs at
time t and observer O records the measurement at time t'. The spatial distance
between event E at time t and the measurement by O at time ¢t is r. Time ¢
and time t are related by

o =r+ct, (1.2)

where ¢ is the speed of the signal. The observer only records the event at ¢
the distance r, the time t of the event, and the speed ¢ of the signal are not
measured directly.

13.2
Complex Numbers

The communication line shown in Figure 1.3 is a primitive system showing
time t and distance r on the same axis. This representation will be modified
with the help of complex numbers. Using complex numbers, a geometric
relationship between the time ¢t of the event E and the distance r between the
event and the measurement will be developed. The geometric relationship will
produce a fourth dimension. Before proceeding with that, though, it will be
instructive to review complex numbers.

A tremendous amount of confusion surrounds the complex number. After
all, what is i = +/—1? The confusion that surrounds the complex number is
traced to the way it became popular; it is a matter of history. However, there
is nothing abstract about it as the following explains. Let us first recall that,
before the coordinate system had become popular, geometry’s principle role
was to deal with shapes constructed from intersecting line segments, surfaces,
and volumes. The line segments, surfaces, and volumes were represented
by positive numbers and zero. Negative numbers are not necessary for the
construction of shapes. In fact, not surprisingly, the earliest treatments with
negative numbers and with complex numbers were met with skepticism.

As geometry evolved, directed line segments, called rays, were introduced to
help with the analysis performed in geometry. The ray was introduced during
the same period as the coordinate system because both kept track of direction.



