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PREFACE

The derivation of structural information from spectroscopic data is an integral part of
Organic Chemistry courses at all Universities. At the undergraduate level, the
principal aim of courses in organic spectroscopy is to teach students to solve simple
structural problems efficiently by using combinations of the major techniques (UV,
IR, NMR and MS). Over a period more than 30 years, we have evolved courses at the
University of Sydney and at the University of New South Wales, which achieve this
aim quickly and painlessly. The text is tailored specifically to the needs and
philosophy of these courses. As we believe our approach to be successful, we hope

that it may be of use in other institutions.

The courses has been taught at the beginning of the third year, at which stage students
have completed an elementary course of Organic Chemistry in first year and a

mechanistically-oriented intermediate course in second year. Students have also been
exposed, in their Physical Chemistry courses, to elementary spectroscopic theory, but
are, in general, unable to relate the theory to actually solving spectroscopic problems.

We have delivered courses of about 9 lectures outlining the basic theory,
instrumentation and the structure-spectra correlations of the major spectroscopic
techniques. The text of this book broadly corresponds to the material presented in the
9 lectures. The treatment is both elementary and condensed and, not surprisingly, the
students have great difficulties in solving even the simplest problems at this stage.
The lectures are followed by a series of 2-hour problem solving seminars with 5 to 6
problems being presented per seminar. At the conclusion of the course, the great
majority of the class is quite proficient and has achieved a satisfactory level of
understanding of all methods used. Clearly, the real teaching is done during the
hands-on problem seminars, which are organised in a manner modelled on that which

we first encountered at the E.T.H. Zurich.

The class (typically 60 - 100 students, attendance is compulsory) is seated in a large
lecture theatre in alternate rows and the problems for the day are identified. The
students are permitted to work either individually or in groups and may use any
written or printed aids they desire. Students solve the problems on their individual
copies of this book thereby transforming it into a set of worked examples and most
students voluntarily complete many more problems than are set. Staff (generally 4

or 5) wander around giving help and tuition as needed - the empty alternate rows of
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seats make it possible to speak to each student individually. When an important
general point needs to be made, the staff member in charge gives a very brief
exposition at the board. There is a 1’2 hour examination consisting essentially of

4 problems from the book and the results are in general very satisfactory. Moreover,
the students themselves find this a rewarding course since the practical skills acquired
are obvious to them. Solving these real puzzles is also addictive - there is a real sense
of achievement, understanding and satisfaction, since the challenge in solving the
graded problems builds confidence even though the more difficult examples are quite

demanding.
Our philosophy can be summarised as follows:

(a) Theoretical exposition must be kept to a minimum, consistent with gaining of an
understanding of the parts of the technique actually used in solving the
problems. Our experience indicates that both mathematical detail and

description of advanced techniques merely confuse the average student.

(b) The learning of data must be kept to a minimum. We believe that it is more
important to learn to use a restricted range of data well rather than to achieve a

nodding acquaintance with more extensive sets of data.

(c) Emphasis is placed on the concept of identifying "structural elements" and the

logic needed to produce a structure out of the structural elements.

1

We have concluded that the best way to learn how to obtain "structures from spectra'
is to practise on simple problems. This book was produced principally to assemble a
suitable collection of problems for that purpose.

Problems 1-282 are of the standard “structures from spectra” type and are arranged
roughly in order of increasing difficulty. A number of problems deal with related
compounds (sets of isomers) which differ mainly in symmetry or the connectivity of
the structural elements and are ideally set together. The sets of related examples
include: problems 3 and 4; 19 and 20; 31 and 32; 42 and 43; 44, 45 and 46; 47, 48
and 49; 50 and 51; 61, 62 and 63; 64, 65 and 66; 81 and 82; 84 and 85; 99, 100, 101
and 102; 107 and 108; 110, 111, 112 and 113; 114 and 115; 118, 119 and 120; 122
and 123; 127 and 128; 139, 140, 141, 142 and 143; 155, 156, 157, 158, 159 and 160;
179 and 180; 181 and 182; 185 and 186; 215 and 216; 226 and 227; 235, 236 and 237;
276 and 277.

A further group of problems offer practice in the analysis of proton NMR spectra: 19,
20, 29, 37, 58,75, 79, 90, 92, 93, 94, 99, 101, 123, 137, 146, 159, 163, 164, 183, 187,
192, 195, 205, 208, 236, 237, 238, 239, 248, 250, 251, 252 and 260.
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A number of problems (195, 196, 197, 198, 230, 231, 260, 264, 265, 268, 271, 274
and 275) exemplify complexities arising from the presence of chiral centres, or from
restricted rotation about peptide bonds (128, 162 and 262), while some problems deal
with structures of compounds of biological, environmental, or industrial significance
(22, 23, 36, 86,95, 127, 131, 132, 144, 153, 162, 164, 197, 204, 220, 259, 260, 261,
263, 264, 265, 267, 272, 273, 274 and 275).

Problems 283-288 are again structures from spectra, but with the data presented in a
textual form such as might be encountered when reading the experimental section of a

paper or report.

Problems 289-296 deal with the use of NMR spectroscopy for quantitative analysis

and for the analysis of mixtures of compounds.

Problems 297-323 represent a considerably expanded set of problems dealing with the
interpretation of two-dimensional NMR spectra and are a series of graded exercises
utilising COSY, NOESY, C-H Correlation, HMBC and TOCSY spectroscopy as aids

to spectral analysis and as tools for identifying organic structures from spectra.

Problems 324-346 deal specifically with more detailed analysis of NMR spectra,

which tends to be a stumbling block for many students.

In Chapter 9, there are also two worked solutions (to problems 96 and 127) as an

illustration of a logical approach to solving problems. However, with the exception
that we insist that students perform all routine measurements first, we do not
recommend a mechanical attitude to problem solving — intuition has an important

place in solving structures from spectra as it has elsewhere in chemistry.

Bona fide instructors may obtain a list of solutions (at no charge) by writing to the
authors or EMAIL: L.Field@unsw.edu.au or FAX: (61-2)-9385-8008

We wish to thank Dr Alison Magill, and Dr Hsiu Lin Li in the School of Chemistry at
the University of New South Wales and Dr Ian Luck at the University of Sydney who
helped to assemble the many additional samples and spectra in the 4™ and 5™ editions
of this book. Thanks are also due to the many graduate students and research

associates who, over the years, have supplied us with many of the compounds used in

the problems.
L. D. Field
S. Sternhell
J. R. Kalman September 2012
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INTRODUCTION

1.1 GENERAL PRINCIPLES OF ABSORPTION SPECTROSCOPY

The basic principles of absorption spectroscopy are summarised below. These are
most obviously applicable to UV and IR spectroscopy and are simply extended to
cover NMR spectroscopy. Mass Spectrometry is somewhat different and is not a type

of absorption spectroscopy.

Spectroscopy is the study of the quantised interaction of energy (typically
electromagnetic energy) with matter. In Organic Chemistry, we typically deal with
molecular spectroscopy i.e. the spectroscopy of atoms that are bound together in

molecules.

A schematic absorption spectrum is given in Figure 1.1. The absorption spectrum is a

plot of absorption of energy (radiation) against its wavelength (1) or frequency (v).

‘ . | absorption
intensity of intensity
transmitted light l

A
' absorption maximum

— T T T T T T T T I
A —
-_—  V

Figure 1.1 Schematic Absorption Spectrum
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Chapter 1 Introduction

An absorption band can be characterised primarily by two parameters:
(a) the wavelength at which maximum absorption occurs

(b) the intensity of absorption at this wavelength compared to base-line (or

background) absorption

A spectroscopic transition takes a molecule from one state to a state of a higher
energy. For any spectroscopic transition between energy states (e.g. E, and E, in

Figure 1.2), the change in energy (AE) is given by:
AE = hv

where /4 is the Planck's constant and v is the frequency of the electromagnetic energy
absorbed. Therefore v oc AE.

Energy AE = Ez- E4

Figure 1.2  Definition of a Spectroscopic Transition

It follows that the x-axis in Figure 1.1 is an energy scale, since the frequency,

wavelength and energy of electromagnetic radiation are interrelated:

VA = ¢ (speed of light)

X:C_
Vv
Ao ——
AE

A spectrum consists of distinct bands or transitions because the absorption (or
emission) of energy is quantised. The energy gap of a transition is a molecular

property and is characteristic of molecular structure.

The y-axis in Figure 1.1 measures the intensity of the absorption band and this
depends on the number of molecules observed (the Beer-Lambert Law) and the
probability of the transition between the energy levels. The absorption intensity is
also a molecular property and both the frequency and the intensity of a transition can

provide structural information.



