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FOREWORD

The First International Cryogenic Materials Conference (ICMC) provided a
new forum for the presentation of low-temperature materials research. The confer-
ence, held in conjunction with the 1975 Cryogenic Engineering Conference,
provided materials research personnel with excellent exposure to current develop-
ments in the cryogenics field and beneficial interactions with designers of cryogenic
systems. Because of the large response to a late call for papers, the enthusiasm and
encouragement at the meeting, and the wide spectrum and high quality of papers, the
Second International Cryogenic Materials Conference is being planned along with
the 1977 Cryogenic Engineering Conference for Boulder, Colorado, in the summer
of 1977.

The success of the First International Cryogenic Materials Conference was
certainly in large measure due to the excellent hospitality of our Canadian hosts, the
Royal Military College of Canada and Queen’s University in Kingston, Ontario. In
particular, the efforts of A. C. Leonard and his staff ensured an excellent conference
and a pleasant and memorable visit to Canada. The Cryogenic Engineering
Conference Board was both generous and skillful in helping to initiate this new
conference and their guidance and acceptance is gratefully acknowledged. The
Cryogenic Engineering Conference program chairman, M. J. Hiza, greatly facilitated
the interaction for the two conferences and provided valuable assistance in generat-
ing a workable program. The proceedings of the 1975 Cryogenic Engineering
Conference are published as Volume 21 of the Advances in Cryogenic Engineering
and include many papers indicating innovative use of new cryogenic materials
properties data.

The assistance of the many dedicated workers in the cryogenic materials field
who have contributed to the reviewing of the final manuscripts for this volume is
gratefully acknowledged by the editors. The list of all those individuals who have
assisted in the many important tasks of readying the manuscripts for publication is as
long as the list of conference attendees and any attempt to acknowledge individual
contributions in this limited space would not do justice to their contributions.

From this collection of papers, it is easy to assess that two principal research
directions are currently contributing stimuli for cryogenic materials research:
applied superconductivity and the storage and transportation of LNG. Particularly
the applied superconductivity programs, including power transmission, supercon-
ducting power packages, and fusion reactors, are heavily supported by federal
agency interests and funding. Consideration of these applications requires that
components operate reliably for extended periods of time at low temperatures.
Future materials properties data will result from this requirement, providing
stimulus for research programs related to efficient alloy selection, alternate materials
choices, and degradation of properties, all leading to safer design.

The conception of an international conference devoted to materials research at
low temperatures began within a national materials research program directed by the
Cryogenics Division of the National Bureau of Standards. This program, “Materials
Research in Support of Superconducting Machinery,” is sponsored by the Advanced
Research Projects Agency of the United States Department of Defense, under the
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vi Foreword

direction of E. C. van Reuth, who, by his unflagging support and encouragement to
ensure both excellence and relevance to cryogenic materials research, contributed
immeasurably to the initiation of an international materials conference. Additional
impetus was added by our friends in Europe, Japan, and the USSR, who have
encouraged us to proceed with the organization of ICMC.

The nuclei of the First International Cryogenic Materials Conference were the
researchers and designers who had previously participated in workshops held for the
superconducting machinery materials program. However, it was the enthusiastic
response of the world-wide materials research community with excellent presenta-
tions and papers that guaranteed a stimulating conference and useful proceedings.
The conference contained many exchanges of ideas to provide insight and direction
for future low-temperature materials research.
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A—I1

A RESEARCH PROGRAM ON THE PROPERTIES
OF STRUCTURAL MATERIALS AT 4 K*

R. P. Reed and A. F. Clark

Cryogenics Division
NBS Institute for Basic Standards
Boulder, Colorado

and
E. C. van Reuth

Advanced Research Projects Agency
Arlington, Virginia

For several years the United States has had experimental programs in supercon-
ducting machinery to produce both ac and dc generators and motors. One limitation
to the progress of these efforts has been the lack of mechanical and thermal
properties data for materials at liquid helium temperature. For the first time,
machinery was to be built that must reliably operate for periods of 20 to 30 years at
temperatures near 4 K. The complete absence of fracture data and scarce thermal
property information seriously limited efficient design, and material selection was
confined to a few alloys familiar to designers. From these considerations, a new
program was developed by the Cryogenics Division of the National Bureau of
Standards with the encouragement and support of the Advanced Research Projects
Agency of the Department of Defense. This program to characterize structural
materials’ thermal and mechanical behavior from 4 to 300 K has now been in
progress for one-and-a-half years, and is expected to continue for a similar period.

The program has three principal objectives: (1) to evaluate candidate structural
materials for use in superconducting electrical machinery by measuring their
mechanical and physical properties between 4 and 300 K and determining the effects
on these properties of processing and joining; (2) to explore new materials, such as
composites, for potential innovative design applications by performing screening
tests on their low-temperature properties; and (3) to assist the information transfer
of the available low-temperature properties data into design use by compiling and
publishing those literature data that are available and by assessing what properties
need further study.

The research on mechanical properties is directed toward adequate characteri-
zation of structural material behavior at 4 K. Naturally, the common tensile and
fatigue properties of candidate materials are measured. In many cases, e.g., torque

* Invited paper.
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tubes of superconducting rotating machinery ['], an essential material design factor is
the elastic modulus. The complete set of elastic constants (Young’s, shear, and bulk
moduli, and Poisson’s ratio) are being measured from 4 to 300 K for structural alloys
and composites. Acoustic resonance and pulse—echo techniques have been adapted
to determine rapidly and accurately these elastic moduli for alloys, semicontinuously
from 4 to 300 K [?]. Previously many time-consuming tensile tests were necessary to
measure the elastic moduli. Figure 1 shows typical elastic constant behavior at low
temperatures, in this case for an annealed 5083 aluminum alloy [*]. Typically, the
elastic constants of structural alloys have a linear dependence on temperatures near
ambient, approach absolute zero with zero slope, and increase in magnitude
approximately 10% from ambient temperature to 4 K. Magnetic transitions or
crystalline phase transformations add complexity and anomalies to this normal
behavior.

An important area of materials properties research, particularly for long-term
reliability, is fracture. Fracture mechanics test techniques are employed to obtain
fatigue crack growth rate and fracture toughness data on principal structural alloys;
this represents the first such data obtained at 4 K [**]. To obtain usable valid data on
Kic, the critical plane strain fracture, toughness parameter, extremely thick (25 to
100 cm) specimens are needed to ensure plane strain fracture conditions in cryogenic
alloys. Such large-specimen testing is extremely expensive and impractical. It was
necessary, therefore, to incorporate the very recently developed J-integral test
procedure to obtain useful fracture toughness data for the tough cryogenic alloys.
Using J-integral techniques, designed to measure the critical amount of energy
needed to extend a crack concomitant with plastic deformation, calculations of K;c
could then be obtained. Typical fracture toughness data[*] for three types of
structural alloys, each having a different crystal structure, are illustrated in Fig. 2.
Here, all data except for the titanium alloy were obtained from J-integral fracture
test techniques. Notice that the face-centered cubic (fcc) structures are the toughest
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program [***].

material class at cryogenic temperatures. Also, fracture toughness correlates with
yield strength (Fig. 3); higher yield strength alloys are less tough. The structural
designer must have well-characterized materials in order to achieve the proper
balance between strength and reliability.

Another neglected area of research at low temperatures has been that of weld
properties. In many applications it is desirable to use welded structures, but
knowledge of weld fracture characteristics at 4 K has been nonexistent. In some cases
this has led to virtual exclusion of weld joints in prototype machines. Therefore, for
selected alloys, fracture toughness and fatigue crack growth rates are being measured
on weld configurations [*]. In Fig. 4, fatigue crack growth rate data at 4 K are
compared for base metal and weld metal (electron beam and gas tungsten arc) of an
Fe-Ni—Cr age-hardenable superalloy. Notice that in all stress ranges the fatigue
cracks propagate faster at 4 K in the base metal than in the weld metal.

A complete outline of the mechanical properties, the alloys being measured, and
the associated laboratories is shown in Table I.

There are many thermophysical properties that are essential for proper
superconducting machine design. In thermal stress calculations for cooldown and
quenching, it is necessary to know the specific heat, thermal conductivity, and
thermal expansion of the component materials. Figure 5 compares the thermal
expansion of selected alloys, several of which were measured in different conditions
to determine the effects of processing. The effects of processing can be several
percent (5-15%) [°] and can be readily accounted for, and even predicted, from
room temperature data. Compared with other thermal properties, the characteriza-
tion of thermal contraction of most structural alloys at low temperatures has less
variation. Using Fig. 5, the difference between a low-expansion titanium alloy and a
high-expansion copper (or aluminum) alloy is about a factor of two.

For transient thermal behavior analysis, thermal diffusivity [thermal
conductivity/(specific heat X density)] data within the temperature range 4-300 K
are needed. In Fig. 6, selected materials having a wide range of thermal conductivity
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Table I. Mechanical Properties Test Programs for

Fiscal Year 1975
Participating
personnel and
Test program Materials measured laboratories
Material characterization
1. Fracture 5083 Al, Fe-21Cr-6Ni-9Mn, R. Tobler,
Inconel 718, Ti-6A1-4V (B), NBS
AISI 304, Inconel 706, W. Logsdon,
Cu-0.4Cr-0.4Cd Westinghouse
2. Fatigue Fe-21Cr-6Ni-9Mn, AISI 304L, F. Schwartzberg,

3. Elastic properties

4. Tensile, compression

Metallurgical variables
1. Effect of grain size

2. Effect of cold work

Mechanical variables
1. Fatigue parameters

2. Effect of thickness

Fabricated joints
1. Welds

2. Adhesive joints

AISI 310, Inconel 718, A286
Cu, Cu-Ni alloys, Cu-Sn alloys,
Inconel 718, Nb-Ti alloys,

composites
Composites, alloys of group Ia

Inconel 718

Kromarc 58

Fe-21Cr-6Ni-9Mn, Inconel 718,
AISI 310
2219 Al

Inconel 718, 706, and 750

Composites to aluminum

Martin
H. Ledbetter,
NBS

M. Kasen,
NBS

W. Logsdon,
Westinghouse

J. Wells,
Westinghouse

J. Wells,
Westinghouse

R. Tobler,
NBS

D. Read
NBS

J. Wells,
Westinghouse
W. Hillig,

General Electric

Fe-Ni, Low
Expansion Alloy

01
Ti-5A1-2.5 Sa

al/L %

Quenched

.3 Cu-11 Sn

1

Furnace Cooled

} AISI 310

3
] 100 200
TEMPERATURE, K

300 Fig. 5. Low-temperature thermal expansion of selected

alloys.
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at low temperatures are presented. The thermal conductivity of alloys is usually not
sensitive to thermal treatment, varying by about 10% ['°]. As the temperature is
decreased, the alloy thermal conductivity decreases approximately linearly. The
temperature dependence of purer elements is complex; the thermal conductivity
initially increases as the temperature is decreased, reaches a maximum, then rapidly
decreases as the temperature approaches absolute zero (e.g., copper in Fig. 6).
Specific heat data [°] show less variation with composition and prediction of
low-temperature behavnor is possible to within 5 to 15%. At low temperature, the
specific heat has a T temperature dependence, which is reduced to a linear
dependence as the temperature approaches room temperature.

Many components are exposed to magnetic fields; therefore it is essential to
know the effect of magnetic fields on the thermal conductivity. Since no mag-
netothermal conductivity measurements have ever been made on alloys, a program
was included to obtain such data ['']. Figure 7 shows some of these new data and that,
indeed, the effect of an imposed magnetic field can result in a significant reduction
(about 50%) for high-conductivity copper and should be considered in design.
Finally, because designs must include magnetic field-shape and loss predictions, the
magnetic susceptibility and the electrical resistivity are being measured for the



