Linux% %41z ($enkR)

| L A U

SN
SN
R

O'REILLY"! r
| &&k% st ROBERT LOVE &

B IR

LInuXZ % RiE zon

Linux System Programming

Robert Love &

f}!i)\ J\t)f !
S ARE 5

O’REILLY"

#Beifing - Caibridge - karnham - Koln - Sebastopol - Tokyo
- 7O'Reilly Media, Inc #2404) K 5 & JRAL IR

MR FEAFHRE

BH#EN&E (CIP) #iE

Linux ZGe4F: %21 #/GDEF (Love. R)
& —REA . i R AR, 201441

F 43 Linux System Programming, 2E

ISBN 978-7-5641-4601-6

L. DL I ®#%-- I @ Linux #E&4% - BF
it — 3 V. © TP316.89

b A P 5 CIP BB 5 (2013) 45 246058

LA RRBUR & ERL A TR D
. 10-2013-371

©2013 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2014. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

LR pR @y O'Reilly Media, Inc. # 52 2013,

RALHEPRRY & B K F R B 2014 S Fp RR 69 o B Ao 4l B 1T 2] i B4 & L6 BT A 4 —— O Reilly
Media, Inc. #3347 ,

WALFRA , AAFHBEHFT, K5 OETIRSfe 2R TFAETH X EH),

Linux R4 % M GREENRR)

Al R AT: AReakF i

Moo hb: BARIHREE2 S 3% : 210096
ok A {TEH

] 3k . http://www.seupress.com

-4 . press@seupress.com

Bl Wl b i EDRIA BR2 R

A, 787 E K x 980 K 16 FF A

gk. 28.5

#:. 558 F%

: 201441 A% 1R

K 20144 1 A5 1 R ERI

5. ISBN 978-7-5641-4601-6

ffr: 78.00 ¢ (#f)
ArtFEBE A RS, FEERSEHPKA, BIF (FH). 02583791830

fred = F 2 H
=3

For Doris and Helen.

WL, FEERNBEELIE: www. ertongbook. com

Foreword

There is an old line that Linux kernel developers like to throw out when they are feeling
grumpy: “User space is just a test load for the kernel”

By muttering this line, the kernel developers aim to wash their hands of all responsibility
for any failure to run user-space code as well as possible. As far as they’re concerned,
user-space developers should just go away and fix their own code, as any problems are
definitely not the kernel’s fault.

To prove that it usually is not the kernel that is at fault, one leading Linux kernel devel-
oper has been giving a “Why User Space Sucks” talk to packed conference rooms for
more than three years now, pointing out real examples of horrible user-space code that
everyone relies on every day. Other kernel developers have created tools that show how
badly user-space programs are abusing the hardware and draining the batteries of un-
suspecting laptops.

But while user-space code might be just a “test load” for kernel developers to scoff at, it
turns out that all of these kernel developers also depend on that user-space code every
day. Ifit weren't present, all the kernel would be good for would be to print out alternating
ABABAB patterns on the screen.

Right now, Linux is the most flexible and powerful operating system that has ever been
created, running everything from the tiniest cell phones and embedded devices to more
than 90 percent of the world’s top 500 supercomputers. No other operating system has
ever been able to scale so well and meet the challenges of all of these different hardware
types and environments.

And along with the kernel, code running in user space on Linux can also operate on all
of those platforms, providing the world with real applications and utilities people
rely on.

In this book, Robert Love has taken on the unenviable task of teaching the reader about
almost every system call on a Linux system. In so doing, he has produced a tome that

will allow you to fully understand how the Linux kernel works from a user-space
perspective, and also how to harness the power of this system.

The information in this book will show you how to create code that will run on all of
the different Linux distributions and hardware types. It will allow you to understand
how Linux works and how to take advantage of its flexibility.

In the end, this book teaches you how to write code that doesn’t suck, which is the best
thing of all.

—Greg Kroah-Hartman

xvi | Foreword

Preface

This book is about system programming on Linux. System programming is the practice
of writing system software, which is code that lives at a low level, talking directly to the
kernel and core system libraries. Put another way, the topic of the book is Linux system
calls and low-level functions such as those defined by the C library.

While many books cover system programming for Unix systems, few tackle the subject
with a focus solely on Linux, and fewer still address the very latest Linux releases and
advanced Linux-only interfaces. Moreover, this book benefits from a special touch: I
have written a lot of code for Linux, both for the kernel and for system software built
thereon. In fact, I have implemented some of the system calls and other features covered
in this book. Consequently, this book carries a lot of insider knowledge, covering not
just how the system interfaces should work, but how they actually work and how you
can use them most efficiently. This book, therefore, combines in a single work a tutorial
on Linux system programming, a reference manual covering the Linux system calls, and
an insider’s guide to writing smarter, faster code. The text is fun and accessible, and
regardless of whether you code at the system level on a daily basis, this book will teach
you tricks that will enable you to be a better software engineer.

Audience and Assumptions

The following pages assume that the reader is familiar with C programming and the
Linux programming environment—not necessarily well-versed in the subjects, but at
least acquainted with them. If you are not comfortable with a Unix text editor—Emacs
and vim being the most common and highly regarded—start playing with one. You'll
also want to be familiar with the basics of using gcc, gdb, make, and so on. Plenty of
other books on tools and practices for Linux programming are out there; Appendix B
at the end of this book lists several useful references.

I've made few assumptions about the reader’s knowledge of Unix or Linux system pro-
gramming. This book will start from the ground up, beginning with the basics, and

Xvii

winding its way up to the most advanced interfaces and optimization tricks. Readers of
all levels, I hope, will find this work worthwhile and learn something new. In the course
of writing the book, I certainly did.

Similarly, I make few assumptions about the persuasion or motivation of the reader.
Engineers wishing to program (better) at the system level are obviously targeted, but
higher-level programmers looking for a stronger foundation will also find a lot to in-
terest them. Merely curious hackers are also welcome, for this book should satiate that
hunger, too. This book aims to cast a net wide enough to satisfy most programmers.

Regardless of your motives, above all else, have fun.

Contents of This Book

This book is broken into 11 chapters and two appendices.

Chapter 1, Introduction and Essential Concepts
This chapter serves as an introduction, providing an overview of Linux, system
programming, the kernel, the C library, and the C compiler. Even advanced users
should visit this chapter.

Chapter 2, File 1/0
This chapter introduces files, the most important abstraction in the Unix environ-
ment, and file I/O, the basis of the Linux programming mode. It covers reading
from and writing to files, along with other basic file I/O operations. The chapter

culminates with a discussion on how the Linux kernel implements and manages
files.

Chapter 3, Buffered I/O
This chapter discusses an issue with the basic file I/O interfaces—bulffer size man-
agement—and introduces buffered I/O in general, and standard I/O in particular,
as solutions.

Chapter 4, Advanced File 1/0
This chapter completes the I/O troika with a treatment on advanced I/O interfaces,
memory mappings, and optimization techniques. The chapter is capped with a
discussion on avoiding seeks and the role of the Linux kernel’s I/O scheduler.

Chapter 5, Process Management
This chapter introduces Unix’s second most important abstraction, the process, and
the family of system calls for basic process management, including the venerable
fork.

Chapter 6, Advanced Process Management
This chapter continues the treatment with a discussion of advanced process man-
agement, including real-time processes.

xviii | Preface

Chapter 7, Threading
This chapter discusses threads and multithreaded programming. It focuses on
higher-level design concepts. It includes an introduction to the POSIX threading
API, known as Pthreads.

Chapter 8, File and Directory Management
This chapter discusses creating, moving, copying, deleting, and otherwise manag-
ing files and directories.

Chapter 9, Memory Management
This chapter covers memory management. It begins by introducing Unix concepts
of memory, such as the process address space and the page, and continues with a
discussion of the interfaces for obtaining memory from and returning memory to
the kernel. The chapter concludes with a treatment on advanced memory-related
interfaces.

Chapter 10, Signals
This chapter covers signals. It begins with a discussion of signals and their role on
a Unix system. It then covers signal interfaces, starting with the basic and conclud-
ing with the advanced.

Chapter 11, Time
This chapter discusses time, sleeping, and clock management. It covers the basic
interfaces up through POSIX clocks and high-resolution timers.

Appendix A
The first appendix reviews many of the language extensions provided by gcc and
GNU G, such as attributes for marking a function constant, pure, or inline.

Appendix B
This bibliography of recommended reading lists both useful supplements to this
work, and books that address prerequisite topics not covered herein.

Versions Covered in This Book

The Linux system interface is definable as the application binary interface and appli-
cation programming interface provided by the triplet of the Linux kernel (the heart of
the operating system), the GNU C library (glibc), and the GNU C Compiler (gcc—now
formally called the GNU Compiler Collection, but we are concerned only with C). This
book covers the system interface defined by Linux kernel version 3.9, glibc version 2.17,
and gcc version 4.8. Interfaces in this book should be forward compatible with newer
versions of the kernel, glibc, and gec. That is, newer versions of these components should
continue to obey the interfaces and behavior documented in this book. Similarly, many
of the interfaces discussed in this book have long been part of Linux and are thus back-
ward compatible with older versions of the kernel, glibc, and gcc.

Preface | xix

If any evolving operating system is a moving target, Linux is a rabid cheetah. Progress
is measured in days, not years, and frequent releases of the kernel and other components
constantly morph the playing field. No book can hope to capture such a dynamic beast
in a timeless fashion.

Nonetheless, the programming environment defined by system programming is set in
stone. Kernel developers go to great pains not to break system calls, the glibc developers
highly value forward and backward compatibility, and the Linux toolchain generates
compatible code across versions. Consequently, while Linux may be constantly on the
go, Linux system programming remains stable, and a book based on a snapshot of the
system, especially at this point in Linux’s lifetime, has immense staying power. What I
am trying to say is simple: don’t worry about system interfaces changing and buy this
book!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

a
N
i

This icon signifies a warning or caution.

A A
&
w?
=

Most of the code in this book is in the form of brief, but reusable, code snippets. They
look like this:

xx | Preface

while (1) {

int ret;
ret = fork ();
if (ret == -1)

perror ("fork");

}

Great pains have been taken to provide code snippets that are concise but usable. No
special header files, full of crazy macros and illegible shortcuts, are required. Instead of
building a few gigantic programs, this book is filled with many simple examples. As the
examples are descriptive and fully usable, yet small and clear, I hope they will provide
a useful tutorial on the first read, and remain a good reference on subsequent passes.

Nearly all the examples in this book are self-contained. This means you can easily copy
them into your text editor and put them to use. Unless otherwise mentioned, all the
code snippets should build without any special compiler flags. (In a few cases, you need
to link with a special library.) I recommend the following command to compile a source

file:

$ gcc -Wall -Wextra -02 -g -o snippet snippet.c

This compiles the source file snippet.c into the executable binary snippet, enabling many
warning checks, significant but sane optimizations, and debugging. The code in this
book should compile using this command without errors or warnings—although of
course, you might have to build a skeleton program around the snippet first.

When a section introduces a new function, itis in the usual Unix manpage format, which
looks like this:

#include <fcntl.h>

int posix_fadvise (int fd, off_t pos, off_t len, int advice);

The required headers, and any needed definitions, are at the top, followed by a full
prototype of the call.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

Preface | xxi

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Linux System Programming, Second Edition,
by Robert Love (O'Reilly). Copyright 2013 Robert Love, 978-1-449-33953-1”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Because the snippets in this book are numerous but short, they are not available in an
online repository.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers ex-
Safa Pl pert content in both book and video form from the world’s leading

BooksOnline authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Linux_Sys_2E.

xxi | Preface

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many hearts and minds contributed to the completion of this manuscript. While no list
would be complete, it is my sincere pleasure to acknowledge the assistance and friend-
ship of individuals who provided encouragement, knowledge, and support along the
way.

Andy Oram is a phenomenal editor and human being. This effort would have been
impossible without his hard work. A rare breed, Andy couples deep technical knowledge
with a poetic command of the English language.

This book was blessed with phenomenal technical reviewers, true masters of their craft,
without whom this work would pale in comparison to the final product you now read.
The technical reviewers were Jeremy Allison, Robert P. J. Day, Kenneth Geisshirt, Joey
Shaw, and James Willcox. Despite their toils, any errors remain my own.

My colleagues at Google remain the smartest, most dedicated group of engineers with
whom I have had the pleasure to work. Each day is a challenge in the best use of that
word. Thank you for the system-level projects that helped shape this text and an
atmosphere that encourages pursuits such as this work.

For numerous reasons, thanks and respect to Paul Amici, Mikey Babbitt, Nat Friedman,
Miguel de Icaza, Greg Kroah-Hartman, Doris Love, Linda Love, Tim O’Reilly, Salvatore
Ribaudo and family, Chris Rivera, Carolyn Rodon, Joey Shaw, Sarah Stewart, Peter
Teichman, Linus Torvalds, Jon Trowbridge, Jeremy VanDoren and family, Luis Villa,
Steve Weisberg and family, and Helen Whisnant.

Final thanks to my parents, Bob and Elaine.

—Robert Love, Boston

Preface | xxiii

Foreword.oovieniieiiiiiiieninnennenens
o) 7 1« -3

1. Introduction and Essential Concepts............

System Programming
Why Learn System Programming
Cornerstones of System Programming
System Calls
The C Library
The C Compiler
APIs and ABIs
APIs
ABIs
Standards
POSIX and SUS History
C Language Standards
Linux and the Standards
This Book and the Standards
Concepts of Linux Programming
Files and the Filesystem
Processes
Users and Groups
Permissions
Signals
Interprocess Communication
Headers
Error Handling

Table of Contents

................. P 411

Getting Started with System Programming

Filel/0. e

Opening Files
The open() System Call
Owners of New Files
Permissions of New Files
The creat() Function
Return Values and Error Codes
Reading via read()
Return Values
Reading All the Bytes
Nonblocking Reads
Other Error Values
Size Limits on read()
Writing with write()
Partial Writes
Append Mode
Nonblocking Writes
Other Error Codes
Size Limits on write()
Behavior of write()
Synchronized I/0
fsync() and fdatasync()
sync()
The O_SYNC Flag
O_DSYNC and O_RSYNC
Direct I/O
Closing Files
Error Values
Seeking with Iseek()
Seeking Past the End of a File
Error Values
Limitations
Positional Reads and Writes
Error Values
Truncating Files
Multiplexed I/0
select()
poll()
poll() Versus select()
Kernel Internals

ooooooooooooooooooooo

24

25
26
26
29
29
31
32
32
33
34
35
35
36
36
37
38
38
38
39
39
40
41
43
43
44
45
45
46
46
47
48
48
49
50
50
51
52
58
61
62

vi

| Table of Contents

