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PREFACE

A friend recently wrote: “Mathematics is the creation of flesh and blood,
not just novelty-curious and wise automatons. We ought to devote some
part of our effofts to increasing understanding of the observable uni-
verse.” This book is a contribution to these efforts. We praise famous
men, men Who created beautiful structures and directed the course of
mathematics. A quotation from the Edda may be appropriate: “One thing I
know that never dies, the call after a dead man.”

The structures that the masters built are not just beautiful to the eye;
they are also eminently useful. In these days when the need is felt for
“applicable mathematics” and ‘““utilitas mathematica,” it is fitting to recall
that few domains of mathematics are so widely applicable as the theory of
ordinary differential equations. This range of ideas is dear to my heart: for
close to 60 years much of my time has been given to the cultjvation of
differential equations.

The book deals with ordinary differential equations in the complex
domain. It covers the usual ground, more or less. Here and there features
are introduced that are less canonical. There is a general emphasis on
growth questions: the dominants and minorants of Section 2.7 constitutea
variation of the majorant theme. The Nevanlinna theory of value distribu-
tion plays an important role: it is applied to the Malmquist-Wittich-Y osida
theorem (Sections 4.5 and 4.6) and to Boutroux’s investigations (Sections
11.2 and 12.3). The Papperitz-Wirtinger account of Riemann’s lectures on
hypergeometric functions and their uniformization by elliptic modular
functions has been rescued from oblivion (Section 10.5). Finally, the
second half of Chapter 12 presents the Emden-Fowler and the Thomas-
Fermi equations, quadratic systems, and Russell Smith’s recent work on
polynomial autonomous systems, all matters of some novelty.

The reader is expected to have some kngwledge of complex variables, a
subject in which our students are frequently weak: they comprehend
little, and often their knowledge is too abstract and is of the wrong kind.
Elementary manipulative skill is too often atrophied. Hence the second
half of Chapter 1 of this book is devoted to complex analysis. Chapter 11
has an appendix on elliptic functions, and modular and theta functions are
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viii PREFACE

thscussed at some length in Sections 7.3 and 10.5. These sections should
help the reader.

Each chapter has a list of references to the literature, and there is a
bibliography at the end of the book. The exercises at the ends of sections
comprise some 675 items.

The book was written at the behest of Harry Hochstadt, who scoffed at
my misgivings and attempts to escape; he has aided and abetted my
efforts, and I owe him hearty thanks. May the book live up to his
cxpectations. Thanks are also due to numerous friends who have helped
with advice, bibliographical and biographical information, and construc-
tive criticism. Specific mention should be made of L. V. Ahlfors, O.
Boriivka, W. N. Everitt, C. Frymann, Ih-Ching Hsu, S. Kakutani, Z.
Nehari, D. Rosenthal, I. Schoenberg, R. Smith, H. Wittich, C. C. Yang and
K. Yosida. J. A. Donaldson and H. Hochstadt have kindly helped with the
proofreading. Further, I am grateful to Addison-Wesley Publishing Co. and
to the R. Society of Edinburgh for permission to use copyrighted material.
I am also indebted to the Department of Mathematics of the University of
California at San Diego for Xerox copying and to the National Science
Foundation for support (Grant GP 41127). Finally, I owe much to my
family, wife and sons, for encouragement, help, interest, and patience.

EinaArR HILLE

La Jolla, California
February 1976
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1

INTRODUCTION

In this chapter we shall list, with or without proof, various facts which

+ will be used in the following. They will fall under two general headings: (1)
algebraic and geometric structures, and (II) analytic structures. Under I
we shall remind the reader of abstract spaces, metrics, linear vector
spaces, norms, fixed point theorems, functional inequalities, partial
ordering, linear transformations, matrices, algebras, etc. Under II we
discuss analytic functions: analyticity, Cauchy’s integral, Taylor and
Maclaurin series, entire and meromorphic functions, power series, growth,
analytic continuation, and permanency of functional equations. This is
quite an ambitious program, and the reader may find the density of ideas
per page somewhat overwhelming. He is advised to skim over the pages in
the first reading and to return to the relevant material as, if, and when
needed. ;

I. Algebraic and Geometric Structures

1.1. VECTOR SPACES

-
The term abstract space is often used as a synonym for set or point set,
but the term usually indicates that the author intends to endow the set
with an algebraic or geometric structure or both. If a Euclidean space R"
serves as a prototype of a space, we obtain an abstract space by
abstracting (= withdrawing) some of its properties while keeping others.
Incidentally, property is an undefined term-(we can obviously not use the
definition ascribed to Jean Jacques Rousseau: La propriété c’est le vol!).
We denote our space by X and its elements by x, y, z, . . .. We say that the
space has an algebraic structure if one or more algebraic operations can
be performed on the elements, or if a notion of order is meaningful at least
for some elements.
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The set is a linear vector space if the operations of addition and scalar
multiplication can be performed. It is required that the set be an Abelian
group under addition, that is, x +y is defined as an element of X, addition
is associative and commutative, there is a unique neutral element 0 such
that x + 0 = x for all x, and every element x has a unique negative, — x, with
x+(—x)=0.

To define scalar multiplication we need a field of scalars, which is
almost always taken to be the real field R or the complex field C. For any
scalar @ and element x there is a unique element ax; scalar multiplication
is associative, it is distributive with respect to addition, and 1-x=x,
where 1 is the unit element of the scalars.

We speak of a real or a complex vector space according as the scalar
field is R or C. The elements of X are now called vectors. A linear vector
space which also contains the product of any two of its elements is called
an algebra. The set of all polynomials in a variable ¢ is obviously an
algebra, and so is the set of all functions ¢ — f(¢) which are continuous at
a point t,. , ;

Consider a set of n vectors x; in X, and let the underlying scalar field be
denoted by F. Then the vectors x; are linearly independent over F if

aXitaxX,+ e, X, =0 (1.1.D

implies that all the «’s are zero. They are linearly dependent over F if
multipliers o; can be found so that (1.1.1) holds with |a,|+|a|+ - -+

* |@.| > 0. Emphasis should be placed on “‘over F,” for restricting F to a
subfield F° or extending it to a larger field F* affects the independence
relations. Thus 1 and 2'* are linearly independent over Q, the field of
rational numbers, but not over A, the field of algebraic numbers. The
space X is said to be of dimension n if it contains a set of n linearly
independent vectors while any n + 1 vectors are linearly dependent. It is
of infinite dimension if n linearly independent vectors can be found for
any n.

The notion of partial ordering is another form of algebraic structure.
We say that X is partially ordered if for some pairs x, y of X there is an
ordering relation x<y (equivalently, y=x) which is reflexive, proper,
and fransitive, that is, (i) x <x for all x, (ii) x <y and y < x imply x =y, (iii)
x<y, y<z imply x<z. If X is linear as well as partially ordered, we
should have

X<y implies x+a<y+a for all a, (A:1.2)
X<y implies ax < ay for a >0. (1.1.3)

In this case X has a positive cone X', defined as the set of all elements
x € X such that 0 <x. This positive cone is invariant under addition and
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multiplication by positive scalars. It contains 0, the neutral element,
usually referred to as the zero element. We now havex<yify—x € X",

The set of real valued continuous functions on the closed interval [0, 1],
say C[0, 1], is an algebra. We define its positive cone X" as the set of
functions ¢ — f(t) whose values on [0, 1] are nonnegative. We have f <g
if g(t)— f(t) is nonnegative in [0, 1].

A more prosaic example may be helpful: the fowl in a hen-yard are
partially ordered under the pecking order.

EXERCISE 1.1

1. Consider the space of all polynomials P(t) in a real variable which take on
real values. Show that X is an algebra.

2. An order relation P < Q is established in X by defining P as positive if its
values are positive for all large positive values of ¢. Show that this ordering is a
trichotomy in the sense that for a given P there are only three possibilities: (i)
P is positive, (ii) — P is positive, or (iii)) P = 0.

3. An order relation is said to be Archimedean if x <y implies the existence of
an integer n such that y < nx. (The natural ordering of the reals is Archime-
dean.) Show that the order defined in Problem 2 is non-Archimedean
inasmuch as the elements fall into rank classes R,, where R, consists of all
polynomials of exact degree k, each R, is Archimedean, but if f is a positive
element of R; and g a positive element of R, with j <k, then f <g and nf <g
for all n. Verify.

4. Prove that 1,t,t%...,t" are linearly independent over R. What is the
dimension of the space formed by these elements?

1.2. METRIC SPACES

A metric space is one in which there is defined a’notion of distance
subject to the following conditions:

D,. For any pair of points P and Q of X a number d(P, Q)=0 is
defined, called the distance from P to Q such that d(P, Q) =0iff P = Q.

D,. d(P,Q)=d(Q,P).

D;. For any R we have d(P,Q)=<d(P,R)+d(R, Q).

These notions go back to the work in the 1890’s of Hermann Minkowski
(1864-1909) on what he called the “geometry of numbers.” He was chiefly
concerned with the extremal properties of linear and of quadratic forms, for
which he found alternative definitions of distance, adjusted to the problemin
hand. Minkowski did not always require D,. Condition D; is the triangle
inequality.
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We say that a linear vector space is normed if the following conditions
hold:

N.. For each x € X there is assigned a number ||x|| = 0 such that ||x]| = 0
iff x=0.

N.. |lax]|=|e||x| for each a in the scalar field.

Na. [+ yll <l + iyl

A normed linear vector space becomes a metric space by setting
dx,y)=x—yl (1.2.1)

In a metric space we can do analysis since the fundamental operation of
analysis, that of finding limits of a sequence, becomes meaningful. If {x,}
is a sequence in the metric space X, we say that x, converges to x, and

Xo = lim x, if lim d(xo, x,) = 0. (1.2.2)

We say that {x, } is a Cauchy sequence if, given any € >0, therc exists an
N such that

d(Xm, X,) < € for m,n > N. . (1.2.3)

If (1.2.2) holds, it follows that {x, } is a Cauchy sequence, buit the converse
is not necessarily true, for there may be gaps in the space. A metric space
X is said to be complete if all Cauchy sequences converge to elements of
the space. Euclidian spaces are complete, and so are various function
spaces that will be encountered in the following. The space Q of rational
numbers is not <omplete.

Various notions of real analysis are meaningful in complete metric
spaces, such as the concepts of closure, open set, closed set, and
e-neighborhood. The Bolzano-Weierstrass theorem need not be valid in a
complete metric space, that is, there may be bounded infinite point sets
without a limit point. Incidentally, “bounded” means that the set can be
enclosed in a “sphere” d(x,0) < R. The topological diameter d(S) of a

subset of X is the least upper bound of the distances d(x, y) for x and y in
S. ]

EXERCISE 1.2

1. The Euclidean norm |ix|, of x in C" is [Z}., |x;|"]'*, where x = (x,, X,, . . ., X,) and.
the x’s are complex numbers. Alternative norms are [x|,=Z=}.,|x| and
[Ix]l. = sup |x;|. Show that they are indeed acceptable norms. Between what
limits do they lie if [|x],=1?

How do you define an open set in these three normed topologies? Show that a

set open in one of them is also open with respect to the others. Verify that C"
is complete in all three metrics.

o
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3. Let X=C[0, 1] be the set of all functions, t — f(t), continuous in the closed
interval [0, 1]. Define a Cauchy sequence if ||f]| = supo<,<: |[f(t)|, and show that
the space is complete.

1.3. MAPPINGS

We shall study mappings from a metric space X into a metric space Y,
both being complete. 'We shall often have Y = X.

The mapping T is a pairing of points x of X with points y of Y, say (x, y).
Here to every x of X is ordered a unique y of Y. To x, # x, correspond the
two values y, and y,, which may or may not be distinct, in fact every x € X
may be mapped on the same point y, €Y. The mapping is onto (a
surjection in the Bourbaki language) if every point of Y is the image y of
at least one x in X. It is (1, 1) (read ‘“‘one to one”) if

X # Xp implies yi=Tx,) # T(x;) = ya. (1.3.1)
The mapping is bounded if there exists a finite M such that
d[T(xy), T(x2)] < Md(x,, x,). (1.3.2)

This is a generalized Lipschitz condition and implies continuity of T(x)
with respect to x. '
If X and Y are linear vector spaces over the same scalar field, and if

T(ax; + ax2) = o, T(xy) + a2 T(x2), (1.3.3)
then T is called a linear transformation. It is bounded iff
d[T(x),0] < M d(x,0). ' (1.3.4)

The most important case is that in which X and Y are complete normed
linear vector spaces, in which case the spaces are called Banach spaces
after the Polish mathematician Stefan Banach (1892-1945), who termed
them B-spaces. In this case (1.3.4) takes the form

ITx] < M| (1.3.5)

If T is a linear transformation, then T(0) =0 and the transformation is
1,1 if

T(x)=0 implies x=0.

If X and Y are B-spaces, the set E(X, Y) of linear bounded transforma-
tions on X to Y is also a B-space under the norm

[Tl = sup | TIxI|, ) (1.3.6)

the supremum being taken with respect to all elements x of X of norm 1. The
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algebraic operations in E(X,Y) are ‘deﬁned in the obvious manner by
[T+ T.][x] = T,[x] + Ts[x], (aT)[x] = aT|x]. (1.3.7)

If Y = X, we write E[X] for E[X, X] and note that products are definable in
the obvious manner by

(T T>)[x] = T(To[xD). (1.3.8)
This gives

1T T < | T T (1.3.9)

It may be shown that E(X, Y) and E(X) are complete in the normad metric,
so they are B-spaces. Also, E(X), which is a normed algebra, actually is a
B-algebra since it is a B-space and satisfies (1.3.9).

If T € E(X) andiis (1, 1), there is an inverse transformation T~"' such that

T(T=x, Vx, TIT b=y ify=Tk. (13.10)

EXERCISE 1.3

1. Show that E(C") is complete. Use any of the metrics for C" listed in Problem
Tk 1. )

2. If T is a linear transformation, verify that T(0) = 0. Here on the right stands

the zero element of Y, while on the left we operate on the zero element of X.
[Hint: T(0+0)= T(0).]

3. If Tis (1,1), why does T(x) =0 imply x=0 and vice versa?

. Why is (1.3.6) a norm? Show that it is the least value that M can have in
(1.3.5).

Prove (1.3.9).

W

14. LINEAR TRANSFORMATIONS ON C"
INTO ITSELF; MATRICES

The simplest of all linear transformations are those which map C" intoitself.
If T is such a transformation, then T is uniquely determined by linearity and
its effect on the basis of C". Any set of n linearly independent vectors would
serve as a basis, but we may just as well use the unit vectors

e; = (0x), (1.4.1)

where 8, is the Kronecker delta, that is, the vector whose jth component is
one, all others being zero. This gives

X=X+ X8+ -+ Xq8p, (1.4.2)

ifx = (x1, X2, . . . , X») inthe coordinate system defined by the vectors e;, Now
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T takes vectorsinto vectors, so there are n’ complex numbers a; such that
Tle.]=ane +axe.+---+axe,, k=1,2,...,n. (1.4.3)
The linearity of T then gives v
Tl = 7( 3 xe) = 3 xTle
k=1 k=1

Qr
Tlx] = 21 (kz, aj.‘xk) ¢ =y, (1.4.4)

from which we can read off the components of the vector y.
The quadratic array

Gn QG2 °°° Qi
Az Qxn " QA

- MR (14.5)
an A2 °°° Qun

is known as a matrix—more precisely, the matrix of the transformation T
with respect to the chosen basis. We can now write T symbolically as

y=T[x]=4 -x, (1.4.6)
where the last member may be considered as the product of the matrix
with the column vector x, the result being the column vector y.

We have to decide when the mapping defined by T is (1, 1). Here the
condition T[x]=0 implies that x =0 now takes the form that the
homogeneous system

Za,»kxk =0, j= 1._2,...,", (1.4,7)
must have the unique solution
YiFE o = 0L
This will happen as long as
det () # 0. (1.4.8)
In this case the mapping is also onto, since for a given vector y we can
solve the system

kzl AaXk = Yis j= 1,2,...,", (1.49)

uniquely for x = (x, x3,...,X,). It follows that T has a unique inverse,
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also an element of E[C"], i.e., a linear bounded transformation of C" into
itself. With this transformation goes a matrix s¢~', which we refer to as the
inverse of . The fact that its elements may be computed from (1.4.9)
shows that the element in the place (j, k) is A/A, where A; is the
cofactor of a; in the determinant A = det (s4). g

We can define algebraic operations and a norm in the set IR, of n-by-n
matrices in terms of which the set becomes a Banach algebra. This
follows from the fact that there is a (1, 1) correspondence between the
linear transformations T in E(C") and their matrices. Then to T, + T, aT,
and T,T, correspond

(au +by)=A+ R, (1.4.10)
(agp)=ad, (1.4.11)
( i aimbmk> == d%- (1.4.12)

A number of different but equivalent norms may be defined for I,. A
suitable one for analysis is

lst]| = max 3 au|. (1.4.13)

We have then
(4| < |4 ]l

Since M, is complete in the normed metric (why?), it follows that I, is a
B-algebra.

We have seen that & has an inverse iff det () # 0. If this is the case A
is said to be regular; otherwise, singular. Together with the given matrix
A we consider the family of matrices

AE—d,

where A runs through the complex field C and € = (8;) is the n-by-n unit
matrix. These matrices are normally regular, but there exist n values of A
for which A€ — & is singular: the n roots of the characteristic equation of
4,

det(A€—)=0. (14.19)

The roots Ay, A, ..., A, form the spectrum o (st) of . They are known as
characteristic values latent roots, or eigenvalues. For these values of A
one can find vectors x, in C" of norm 1 such that

d * Xk =Akxk. (1.4.15)

The characteristic vectors x, are linearly independent and may be chosen
so that they form an orthogonal system; in this case the inner product
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9= x5 =0 (14.16)

for x = x;, y = X, k # m. This holds even if (1.4.14) has multiple roots. A
matrix & is singular iff zero belongs to the spectrum.

EXERCISE 1.4

Find the eléments of & ' when o is regular.
Verify the inequality for the norm of the matrix product.

Prove the Hamilton-Cayley theorem, which asserts that the matrix o satisfies
its own characteristic equation.

W B e

1.5. FIXED POINT THEOREMS

The Dutch mathematician L. E. J. Brouwer proved in 1912 that a
continuous map of the unit ball in R" into itself must necessarily leave at
least one point invariant. Such a point is known as a fixed point, and an
assertion about the existence of fixed points is known as a fixed point
theorem. We shall prove some theorems of this nature. We start with a
theorem proved by S. Banach in his Krakow dissertation of 1922. It refers
to mappings of a complete metric space by a contraction, i.e., a bounded
transformation of the space X into itself such that

d[T(x), T(v)]<kd(x,y), (1.5.1)

where k is a fixed constant, 0 < k < 1. Such a mapping evidently tries to
shrink the object. Banach’s theorem states that there is a point which does
not move.

THEOREM 1.5.1

If T is a contraction defined on a complete metric space X, then there is
one and only one fixed point.

Proof. The triangle inequality plays a basic role here. We start with an
arbitrary point x, € X and form its successive transforms under T:

Xih= ), n="1,2 .. (1.52)

These elements form a Cauchy sequence, and X being a complete metric
space, X, = lim x, exists and is to be proved to be a fixed point—in fact,
the only such point. Now it is sufficient to prove that, given any € >0,
there is an N such that

/
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