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Preface

This volume is being published for two reasons. The first is to present a
collection of previously published articles on the subject of programming
methodology that have helped define the field and give it direction. It is
hoped that the scientist in the field will find the volume useful as a
reference, while the scientist in neighboring fields will find it useful in
seriously dcquainting himself with important ideas in programming
methodology. The advanced student can also study it—either in a course
or by himself—in order to learn significant material that may not appear
in texts for some time. 4

The second reason for this volume is to make public the nature and
work on programming methodology of IFIP Working Group 2.3, hereafter
called WG2.3. (IFIP stands for International Federation for Information
Processing.) WG2.3 is one of many IFIP Working Groups that have been
established to provide international forums for discussion of ideas in
various areas. Generally, these groups publish proceedings of some of their
meetings and occasionally they sponsor a larger conference that persons
outside a group can attend.

WG2.3 has been something of a maverick in this respect. From the
beginning the group has shunned paperwork, reports, meetings, and the
like. This has meant less publicity for IFIP and WG2.3, but on the other
hand it has meant that meetings could be devoted almost wholly to
scientific discussions.

Moreover, meetings have not centered on formal presentation of com-
pleted, published material; instead, the emphasis has been on the presenta-
tion and discussion of research underway. Thus, members could receive
their colleagues’ constructive criticisms at a much earlier stage than usual.
Many members feel that this mode of operation has furthered their own
research endeavors, and have accordingly acknowledged WG2.3 in their
publications. ;

This volume, then, is the first formal “output” from WG2.3. It contains
articles by members of the group that are deemed to be significant and
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X PREFACE

exemplary work of programming methodology and of WG2.3. Unfor-
tunately, lack of space prohibits the incorporation of material by all
members. Many have written important books, articles, and technical
reports that simply could not be included.

Each of the next five Parts consists of an Introduction and a series of
articles devoted to one aspect or area of programming methodology. Part I
contains a number of largely nontechnical articles, many of them based on
lectures, which give thoughts, opinions, and viewpoints on various aspects
of the field. This Part should give the reader a definite view of where the
experts think programming has been and where it is or should be going.

Parts II through V then cover four different areas of programming
methodology in detail. These certainly do not define the complete field of
programming methodology (which is nowhere defined), but they represent
significant aspects of the subject. Part II contains articles on the use of
correctness proofs in programming and the related topic of defining a
programming language so as to facilitate proofs. Part II is the largest of the
five Parts, reflecting the importance of the subject and the major role
played by members of WG2.3 in its development. The articles in Part III
attack the problem of harnessing parallelism so that it can be used effec-
tively—particularly in operating systems. Part IV is devoted to the topic of
(programmer-defined) data types and their use in programming. Finally,
the articles in Part V deal with different aspects of creating large programs
and /or systems of programs, and is entitled Software Development.

Following Part V is a list of references, which is split into two sections.
The first is a WG2.3 Bibliography—a list of publications relevant to
programming methodology by members of WG2.3. Most of this was
compiled by Sol J. Greenspan and Jim J. Horning (see [Horning 77b*]);
the reader might wish to obtain this report, which contains annotations not
included here.

All the publications cited by articles in this volume are listed either in
the WG2.3 Bibliography or in the second list of references following this
bibliography, and all references within the text are to one of these lists.
Examples will illustrate the nature of the text references: [Burstall 72b*]
refers to the second (because of b) 1972 article by Burstall (Algebraic
description of programs with assertions, verification, and simulation); the
“*” indicates that it is to be found in the WG2.3 Bibliography. The
reference [Mills 72] refers to the 1972 article by. Mills (Mathematical
foundations of structured programming), which appears in the second list
of references (no “*” is present).

In compiling this volume, I have had the help of many people. Mike
Woodger, the first chairman of WG2.3, was influential in getting this
project underway and constructed an initial list of potential articles. Jim
Horning, the current chairman, continued to support the project and
(along with Greenspan) provided most of the references in the WG2.3
Bibliography. I have had the advice and criticism of WG2.3 members and
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of Jim Donahue, Greg Andrews, and Manfred Paul both on my selection
of articles and on my Introductions. Needless to say, however, I take full
responsibility for any mistakes, for the selection and arrangement of the
articles, and for the omission of many other excellent articles in order to,
keep the volume to a reasonable size. It should be mentioned that the
volume would not have been possible without the dedicated and creative
work of the authors of the articles.

David Gries
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102 9 PROOF OF A PROGRAM: FIND

One method of achieving the desired effect would be to sort the whole
array. If the array is small, this would be a good method; but if the array is
large, the time taken to sort it will also be large. The Find program is
designed to take advantage of the weaker requirements to save much of the
time which would be involved in a full sort.

The usefulness of the Find program arises from its application to the
problem of finding the median or other quantiles of a set of observations
stored in a computer array. For example, if N is odd and f is set to
(N+1)/2, the effect of the Find program will be to place an observation
with value equal to the median in A[ f]. Similarly the first quartile may be
found by setting f to (N +1)/4, and so on.

The method used is based on the principle that the desired effect of
Find is to move lower valued elements of the array to one end—the
“left-hand” end—and higher valued elements of the array to the other end
—the “right-hand” end. (See Table I(a)). This suggests that the array be
scanned, starting at the left-hand end and moving rightward. Any element
encountered which is small will remain where it is, but any element which
is large should be moved up to the right-hand end of the array, in
exchange for a small one. In order to find such a small element, a separate
scan is made, starting at the right-hand end and moving leftward. In this
scan, any large element encountered remains where it is; the first small
element encountered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward scan. Then both
scans can be resumed until the next exchange is necessary. The process is
repeated until the scans meet somewhere in the middle of the array. It.is
then known that all elements to the left of this meeting point will be small,
and all elements to the right will be large. When this condition holds, we
will say that the array is split at the given point into two parts (see Table
10b)):

The reasoning of the previous paragraph assumes that there is some
means of distinguishing ‘small elements from large ones. Since we are
interested only in their comparative values, it is sufficient to select the
value of some arbitrary element before either of the scans starts; any
element with lower value than the selected element is counted as small,
and any element with higher value is counted as large. The fact that the
discriminating value is arbitrary means that the place where the two scans
will meet is also arbitrary; but it does not affect the fact that the array will
be split at the meeting point, wherever that may be.

Now consider the question on which side of the split the fth element in
order of value is to be found. If the split is to the right of A[f], then the
desired element must of necessity be to the left of the split, and ali
elements to the right of the split will be greater than it. In this case, all
elements to the right of the split can be ignored in any future processing,
since they are already in their proper place, namely to the right of A[f] (see
Table I(c)). Similarly, if the split is to the left of A[f], the element to be
found must be to the right of the split, and all elements to the left of the
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Table 1

—

(a) l

Move small values left

Move large values right

1 | N,
(b) [ |
N N A s——
Rightward scan has Leftward scan has
covered these elements, covered these
and they are all small. elements, and they
are all large.
r Consequently, the
array is split here
i A N,
() [3[17]1Te]6]1]7]11]7]6]9]2]2[17]20]30]25]19]17]30|
L - . . J
2\ g
The n smallest values of All elements here
the array are in this are greater than
part; including the fth any to the left.
largest value. .
h f N,
@ | [ l
\—Y_J%ﬁ;f -~ /
Left part: Middle part: Right part:
all ele- further scans are all elements > those
ments < confined to this of middle part.
those of part.
middle
part. .
P —
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104 9 PROOF OF A PROGRAM: FIND

split must be equal or less than it; furthermore, these elements can be
ignored in future processing.

In either case, the program proceeds by repeating the rightward and
leftward scans, but this time one of the scans will start at the split rather
than at the beginning of the array. When the two scans meet again, it will
be known that there is a second split in the array, this time perhaps on the
other side of A[f]. Thus again, we may proceed with the rightward and
leftward scans, but we start the rightward scan at the split on the left of
A[f] and the leftward scan at the split on the right, thus confining
attention only to that part of the array that lies between the two splits; this
will be known as the middle part of the array (see Table 1(d)).

When the third scan is complete, the middle part of the array will be
split again into two parts. We take the new middle part as that part which
contains A[ f] and repeat the double scan on this new middle part. The
process is repeated until the middle part consists of only one element,
namely A[f]. This element will now be equal to or greater than all
elements to the left and equal to or less than all elements to the right; and
thus the desired result of Find will be accomplished.

This has been an informal ‘description of the method used by the
program Find. Diagrams have been used to convey an understanding of
how and why the method works, and they serve as an intuitive proof of its
correctness. However, the method is described only in general terms,
leaving many details undecided; and accordingly, the intuitive proof is far
from watertight. In the next section, the details of the method will be filled
in during the process of coding it in a formal programming language; and
simultaneously, the details of the proof will be formalized in traditional
logical notation. The end product of this activity will be a program suitable
for computer execution, together with a proof of its correctness. The reader
who checks the validity of the proof will thereby convince himself that the
program requires no testing.

3 Coding and proof construction

The coding and proof construction may be split into several stages, each
stage dealing with greater detail than the previous one. Furthermore, each
stage may be systematically analyzed as a series of steps.

3.1 Stage 1: problem definition

The first stage in coding and proof construction is to obtain a rigorous
formulation of what is to be accomplished, and what may be assumed to
begin with. In this case we may assume:
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(a) The subscript bounds of A are 1 and N.
(b) IS < N.

The required result is:
Vp,q(1< p< f[Rg<KNDA[p]<A[f]<A[q]) [Found]

3.2 Stage 2: the general method

(1) The first step in each stage is to decide what variables will be required
to hold intermediate results of the prqgram. In the case of Find, it will be
necessary to know at all times the extent of ‘the middle part, which is
currently being scanned. This indicates the introduction of variables m and
n to point to the first element A[m] and the last element A[n] of the middle
part.

(2) The second step is to attempt to describe more formally the purpose
of each variable, which was informally described in the previous step. This
purpose may be expressed as a formula of logic which is intended to
remain true throughout the execution of the program, even when the value
of the variable concerned is changed by assignment.! Such a formula is
known as an invariant.' As mentioned above, m is intended to point to the
leftmost element of the middle part of the array; and the middle part at all
times contains A[ f]; consequently m is never greater than f. Furthermore,
there is always a split just to the left of the middle part, that is between
m—1 and m. Thus the following formula should be true for m throughout
execution of the program:

m< f&Vp,q(1< p<m<g<NDA[p]<A[q])
[ m-invariant |

Similarly,.n is intended to point to the rightmost element of the middle

part; it must never be less than f, and there will always be a split just to the
right of it:

fRn&Vp,q(1<p<n<g<NDA[p]<A[q])

[ n-invariant]

(3) The next step is to determine the initial values for these variables.

Since the middle part of the array is intended to be the part ‘that still

requires processing, and since to begin with the whole array requires

processing, the obvious choice of initial values of m and n are 1 and N,

respectively, indicating the first and last elements of the whole array. The
code required is:

m:=1; n:=N

! Except possibly in certain “cfitical regions.”
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(4) It is necessary next to check that these values satisfy the relevant
invariants. This may be done by substituting the initial value for the
corresponding variable in each invariant, and ensuring that the result
follows from facts already known:

I<fKNDILf& Vp, q(1<p<1<q<N3A p]<A4[q])
[Lemmal]

I<fSNDOFSN & Vp,q(1<p<N<g<NDA[p]<A[q])
[Lemma 2]

The quantified clause of each lemma is trivially true since the antecedents
of the implications are always false.

(5) After setting the initial values, the method of the program is
repeatedly to reduce the size of the middle part, until it contains only one
element. This may be accomplished by an iteration of the form:

while m <n do “reduce middle part”

(6) It remains to prove that this loop accomplishes the objectives of the
program as a whole. If we write the body of the iteration properly (i.e. in
such a way as to preserve the truth of all invariants) then all invariants will
still be true on termination. Furthermore, termination will occur only when
m<n goes false. Thus it is necessary only to show that the combination of
the truth of the invariants and the falsity of the while clause expression
m<n implies the truth of Found. '

m<f&VYp,q(1<p<m<q<NDA[p]<A[q])
&f<n&Vp,q(1<p<n<g<NDA[p]<A[q]) & ~m<n
OVp,q(1<p<f<g<NDA[p]<A[f]<A[q]) [Lemma 3]

The antecedents imply that m=n=/f. If 1 <p<f<g<N, then either p=,
in which case A[p]<A[f] is obvious, or p <f, in which case substituting f
for. both m and g in the first quantified antecedent gives A[p]<A[f]. A

similar argument shows that A[ f]<A[q].
At this point, the general structure of the program is as follows:

m:=1;,n:=N;
while m <n do “reduce middle part”

Furthermore, this code has been proved to be correct, provided that the
body of the contained iteration is correct.

3.3 Stage 3: reduce the middle part
(1) The process for reducing the middle part involves a scan from the left

and from the right. This requires two pointers, i and j, pointing to elements
A[i] and A[/] respectively. In addition, a variable r is required to hold the
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arbitrary value which has been selected to act as a discriminator between
“small” and “large” values. )

(2) The i pointer is intended to pass over only those array elements with
values smaller than r. Thus all array elements strictly to the left of the
currently scanned element A[/] will be known always to be equal to or less
than r:

m<i&Vp(1<p<idDA[p]<r) [ i-invariant

Similarly the ; pointer passes over only large values, and all elements
strictly to the right of the currently scanned element A[;] are known
always to be equal to or greater than r:

J<n&Vq(j<g<NDr<A[q]) [ j-invariant

Since the value of r does not change, there is no need for an r-invariant.

(3) The i pointer starts at the left of the middle part, i.e. at m; and the j
pointer starts at the right of the middle part, i.e. at n. The initial value of r
is taken from an arbitrary element of the middle part of the array. Since
A[ f] is always in the middle part; its value is as good as any.

(4) The fact that the initial values satisfy the /- and j-invariants follows
directly from the truth of the corresponding m- and n-invariants; this is
stated formally in the following lemmas:

fEN&m<f&VYp,q(1<p<m<q<NDA[p]<A[q])
Dm<m&Vp(1<p<m>DA[p]<A[f]) [Lemma 4]

I<f&f<n&Vp,q(1<p<n<g<NDA[p]<A[q])
On<n&Vq(n<g<NDA[f]<A[q]) [Lemma 5]

The first of these is proved by setting ¢ to f and the second by setting p to

/.

(5) After setting the initial values, the method is to repeatedly add one
to i and subtract one from j, until they cross over. This may be achieved by
an iteration of the form:

while / < do “increase / and decrease ;”

On exit from this loop, j </ and all invariants are intended to be preserved.
If j and 7 cross over above f, the proposed method assigns j as the new
value of n; if they cross over below f, i is assigned as the new value of m.

if f<jthenn:=,
else if i< fthen m:=i

else go to L



