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PREFACE

This book is the outcome of a mathematical essay on ““Maps™
written at Cambridge in 1922, and is an attempt to supply
the need, which I then discovered, for a book dealing compre-
hensively with the theories that underlie their construction.
It is therefore a book for a student of the mathematical side
of geography; and a fair knowledge of the Calculus is all he
will need to enable him to fill in for himself the many details
of the work which have, for the sake of brevity, been omitted
from the text.

I have attempted, in the earlier chapters, first of all to
trace, as far as possible, the history of the projections con-
cerned ; this is followed by an account of the general theory,
from which results are then deduced in the special cases that
arise. In this way I deal with the properties of the four main
classes of projections. Then follows a chapter on the theory
of the Indicatrix, and the method of comparing one projection
with another; next the question of finite measurements,
perhaps the most important of all from a practical point of
view; then a discussion of the best projection for a given
country, and finally the general problem of conformal repre-
sentation of which the complete solution has yet to be
effected. '

Though I have checked as well as I can the many expansions
that are given, I am fully aware that some errors, I hope only
slight, may have crept in; and I should therefore be pleased
to receive corrections from any reader who may have dis-
covered one.

I am indebted for many valuable suggestions to Mr. A. R.
Hinks, F.R.S., Secretary of the Royal Geographical Society,
who kindly lent me for reference the works by Germain and
Tissot which appear in the list below. A great source of
further help, especially in the work on “Minimum Error,”
was Mr A. E. Young’s book, published as No. I of the
Technical Series by the same Society.
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The following is a complete list of the authors and works
consulted, and I trust that, where necessary, adequate ac-
knowledgment to them has been made in the text.

A. GERMAIN. T'raité des Projections des Cartes Géographiques.

Paris, 1865.

A. Tissot. Mémoire sur la Représentation des Surfaces et les
Projections des Cartes Géographiques. Paris, 1881.

J. I. Crata. The Theory of Map Projections.  Cairo, 1910.
A. R. HINgs. Map Projections. Cambridge, 1921.
A. E. YouNa. Some Investigations tn the Theory of Map
Projections. London, 1920.

Encyclopaedia Britannica. Article on Map Projections.

R.K. M

RossaLL
Oct. 1931
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CHAPTER I
INTRODUCTORY

In all probability the drawing of maps and charts was closely
associated in its beginnings with the study of geometry. Ac-
cording to Herodotus the Egyptians were brought to the
study of geometry in the endeavour to keep records of the
extent of their land, so that after the floods of the Nile it
might be possible to assess the tax that each man had to pay
according to the area of the land left to him. Thus they began
to draw diagrams and charts of the divisions of the land, and
these, no doubt, eventually grew into maps. Ignorance of the
actual shape of the earth probably prevented them from
realising many of the difficulties surrounding such a problem
as the construction of a map, for ever since those days men
have been studying the question and attempting to find the
best method of solving it. For the representation of the earth,
an oblate spheroid, on a plane, is a problem that admits of
no absolutely correct solution. A spheroid isnot a developable
surface, such as a cone or a cylinder, and thus it is impossible
to imagine a piece of paper wrapped round the earth, on which
the shapes of countries and continents could be described
exactly, and which could then be unwrapped into a plane
map.

Any representation that we can make, any map that we
can draw, must be incorrect in certain respects. It may be
so in all, and be made so that each property of it approxi-
mates as nearly as possible to the corresponding one on the
earth, or, as is more generally the case, it may be made so as
to be correct in one or two respects, and not at all in the
others; for example, so as to sacrifice correctness of shape to
that of area, or that of azimuth to that of distance.

MMP I
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When a map is being drawn, each point on it is fixed ac-
cording to some given law which expresses the co-ordinates
of that point on the map in terms of those of the corre-
sponding point on the earth. Such a law is called the Pro-
Jection on which the map is drawn; and the equations of
the projection are those which give the relation between the
terrestrial co-ordinates and those of the point on the map.
It is usually convenient to have the map co-ordinates ex-
panded in ascending powers of the latitude and longitude, or
differences of those quantities, of the point under considera-
tion, and these expansions will of course be the solutions of
the equations of the projection.

Projections in which the shape of small elements is pre-
served are called Orthomorphic, those in which areas are
preserved Equal Area, and those which give distances of all
points from a fixed centre correctly Simple or Equidistant.
These are the three chief classes of projections, though there
are several others which have been used to a less extent, for
example, the Minimum Error, in which the total square error,
i.e. the sum of the squares of the errors of scale in two direc-
tions at right angles, summed for every point of the map, is
made a minimum—and others, such as the doubly azimuthal,
of which some account is given later, which have as yet been
put to no practical use.

Co-ordinates and length of arc of meridian.

The position of a point on the earth is usually given by its
latitude and longitude, but the mathematics is often simplified
if, instead of the former of these, we make use of the colati-
tude, i.e. the angle between the normal at the point and the
polar axis.

Let P be any point on the earth, PG the normal at P, and
NOG the axis of the earth; and let PGN = 0, and the longi-
tude of the meridian NPA be ¢. Then if we take the earth
as having an equatorial radius unity and eccentricity e,
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the equation of the meridian NPA referred to its principal
axes is o y?

1—¢?

It will sometimes be found convenient to use, instead of

the eccentricity e, the ellipticity, i.e. the ratio of the difference

between the semi-axes to the semi-major axis. Calling this e

=1,

we have (l—e?=1—e,

2
or, neglecting powers of ¢ above the first, e = % Thus the

equation of the meridian is

2
2 Yy ___
x+1_2e 1.

If P be the point £,  the equation of the normal PG is

3 n
whence tan @ 3 (17)_ €
7 _
Also fz+1_€2—1,
_ sin 0 ; 5
&= ——-—————(1 mprpw— or sinf (1 + ecos?d),
— 2
7= 1 —elcnd or cosf{l — e (2— cos?6)}.

B (1 — €2 cos?0)}
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To find the element do of arc of the meridian we have

- @+ @] -

3e
or l—§+-2—COS29

and the length of the arc of a meridian between two points
of colatitudes ¢ and B is to the first order

2 (1 - —)8+ cos 2y sin 28,

where 2x=ae¢+ B, 20=a—B.

Also if p and v be the radius of curvature and normal of
meridian respectively,

1—¢? e  3e
=————  or 1—_+4 = cos26,
P (1 — €2 cos20)t 2 2
v=§cose00=——l—— or 1+ ecos?f.

(1 — €2 cos2)t

Normal, oblique and transverse projections.

If we neglect e altogether and regard the earth as a sphere,
which is quite often sufficient for maps on small scales such
as are used in atlases, then we simply have

£ =sinf, 7= cosd.

In this case, since all the meridians are circles, it becomes
possible to measure the latitude and longitude from an axis
other than the geographical one. Thus out of one projection,
giving the co-ordinates of the map point in terms of the
geographical latitude and longitude of the earth point, we
may derive another by regarding these latter as being no
longer referred to the polar axis but to an axis through some
other point. The original projection is called Normal, and
the derived one Oblique, or, if the pole of the map be on the
Equator, Transverse.
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To obtain the relations between geographical co-ordinates
and those referred to another pole, when regarding the earth
as a sphere, we make use of the
ordinary results of spherical trigo-
nometry.

Let C be the pole of the map,
N the north pole, and the co-
latitude and longitude of C be y, {.
Then if P is any point whose co-
ordinates referred to N are p, A
and referred to C are 6, ¢, we
have—since, as we may measure
¢ from any plane, we may suppose it measured from that of
the meridian through C—

cos @ = cos u cos y + sin p sin y cos (A — {),

cospu = cos 0 cos y — sin 6 sin y cos ¢,
sin 6 sin ¢ = sin p sin (A — ),
from which we may derive, by eliminating p,
cos fsin y + sin 0 cos y cos ¢ = sin fsin ¢ cot (A — ).

These equations enable us, when given the co-ordinates of a
point on the map in terms of 6 and ¢, to find equations be-
tween them and their geographical co-ordinates u and A.

Conical projections.

A conical projection is one in which the plane map is de-
rived from one drawn on a cone, simply unwrapping it from
the cone. Imagine a cone, vertex V, placed so that its axis
coincides with that of the earth, as in the figure, and suppose
the projection be made in such a way that the azimuths of
all points are preserved and the parallels on the earth become
the circular cross-sections of the cone. Then we shall have
a map on the cone in which the meridians on the earth are
represented by the generators. Now if P be a point, longi-
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tude ¢, and A4 the point on the meridian 0° and of the same

latitude
AP CP

Af’P=T/?=W5¢= $sina,
where ¢ is the semi-vertical angle of the cone. Thus if two
points on the earth have their longitudes differing by ¢, the
angle between the generators through them is ¢ sin «. Now
let the map be unwrapped from the cone into a plane; we shall
have for the parallels arcs of concen-
tric circles,and for the meridians a set V
of concurrent straight lines making l
with each other angles proportional
to the differences in longitude, and
the constant of the proportion, which
is called the constant of the cone, is ¢
sin a. Thus a map of the world would c A
be enclosed between twolines inclined p
at an angle of 27 sin a.

In the particular cases when the semi-vertical angle of the
cone has its limiting values 0 and 7/2, the cone becomes in
the first case a cylinder and the projection is said to be
cylindrical, in the second a plane and the projection is
called Azimuthal, since the azimuths of all points from the
pole are given correctly. A projection of this latter kind has
also been called Zenithal, but there seems to be little reason
for such a name.

A conical, cylindrical or azimuthal projection can of course
be made to satisfy any other condition, for we have still to
specify in what way the map on the cone is derived from the
earth; for example it may be derived so that shapes are pre-
served, giving an orthomorphic, or areas, giving an equal area
projection. Again the cone may be applied, if we regard the
earth as a sphere, with its axis coinciding with some diameter
other than the polar axis, and in this case we should have
an oblique conical projection.




CALCULATION OF CONSTANTS 7

The equations eventually obtained by these considerations
will contain certain constants, e.g. the constant of the cone,
and we may determine these so as to satisfy certain other
kinds of conditions. One method is to make the lengths of
two parallels correct, that is, equal to the lengths of the
corresponding parallels on the earth, subject to the modifica-
tion of the scale on which the map is drawn. The cone of
the fig. on p. 6, or the cylinder, in the case of a cylindrical
projection, cuts the earth in these two parallels, which are
said to be Standard Parallels. A modification of this method
is to make the cone or cylinder touch the earth, in which case
the two parallels coincide and the projection has one standard
parallel only.

In the case of a conmical projection with two standard
parallels of colatitudes 6, and 0,, and radii on the map r,
and r,, we shall have, taking the radius of the earth as unity—
as we shall do throughout—

27 8in 0, = 2nmry,
and therefore sin 6, = nry or & =nry,
sin 0, = nr,, & =mnr,
for the spheroid. From these two equations n and the other
constant which appears in the expression for the radius may
be found.

Another method of calculating the constants, which has been
used by Sir George Airy, Col. Clarke, v
and more latterly by Mr A. E. Young,

is that of Minimum Error, a method
practicable only in the case of conical

projections. Suppose P any point on

the map, co-ordinates 6, ¢, and let the

parallel through it have a radius 7. /
\_

Let Q be a neighbouring point on the Q
same meridian, co-ordinates 6 + 86,
é; and R a neighbouring point on the same parallel,
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co-ordinates 0, ¢ -+ 8¢. Then the angle subtended at the
centre V by PR is nd¢, where n is the constant of the cone.
We thus have PQ = &7, PR = nr8¢; and the corresponding
lengths on the earth are 66 and sin 88¢$. Thus the scales along
the meridian and the parallel are respectively

dr q

o "¢ sme
Sir George Airy devised the plane of making the total square
error, i.e. the sum of the squares of the errors of scale in these
two directions, summed for every point of the map, a mini-

mum. We should thus have to make

J J [(% - 1>2 + (& ~ 1)2] sin 0dfdg

a minimum, where the integration is taken for the whole area
of the map, the factor sin 6dfd¢ being the element of area
on the earth, regarded as a sphere*. Airy only considered
the case » = 1, i.e. an azimuthal projection, and found an
expression for r in terms of 6, but Young, in his Some Investi-
gations in the Theory of Map Projections, extended the method
to the calculation of the constants of the projections as well
as to the discovery of the equations.

A third method of calculating the constants, probably in-
troduced first by Murdoch, is to make the total area of the
map correct. As an example take the conical projection of
the zone between two parallels « and B, the radii of whose
projections are 7, and r5. The area on the map is (752 — 7,2) nr,
and that on the earth is

B r2mr
J’ J sin 0dfd¢ = 27 (cos & — cos B).
aJO

* In a conical projection r is independent of ¢, and if, as is usual, we
are calculating the total square error of a zone between two parallels a
and 8, we can integrate with respect to ¢ at once, between the limits 0
and 2, and dividing by 2= obtain the expression which we call the total

squ&re error B dr 2 nr 2 .
M= LR@— 1) +<§m—9— 1> ]smodo.



