Analysis of Food Contaminants

Edited by

JOHN GILBERT

Analysis of Food Contaminants

Edited by

JOHN GILBERT

Ministry of Agriculture, Fisheries and Food, Food Laboratory, Norwich, UK

ELSEVIER APPLIED SCIENCE PUBLISHERS
LONDON and NEW YORK

ELSEVIER APPLIED SCIENCE PUBLISHERS LTD Ripple Road, Barking, Essex, England

Sole Distributor in the USA and Canada ELSEVIER SCIENCE PUBLISHING CO., INC. 52 Vanderbilt Avenue, New York, NY 10017, USA

British Library Cataloguing in Publication Data

Analysis of food contaminants.

1. Food contamination 2. Food—Analysis
I. Gilbert, John
363.1'92'028 TX541

ISBN 0-85334-255-5

WITH 54 TABLES AND 89 ILLUSTRATIONS

© ELSEVIER APPLIED SCIENCE PUBLISHERS LTD 1984

The selection and presentation of material and the opinions expressed in this publication are the sole responsibility of the authors concerned

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner, Elsevier Applied Science Publishers Ltd, Ripple Road, Barking, Essex, England

Preface

In today's complex industrial environment the possibilities of occurrence of trace contamination of foods and beverages as well as the number of possible sources of contamination have significantly increased. Concern about low levels of exposure to contaminants, coupled with an improved analytical capability to detect smaller and smaller amounts of both organic compounds as well as inorganic elements, has generated a desire for surveillance of the food supply by both Regulatory authorities and manufacturing industry.

Sophisticated analytical techniques for monitoring trace contaminants have developed rapidly and the knowledge of 'what is present' in foods and beverages at low levels is far ahead of the necessary toxicology. Hence, although assessments of risk from contaminants in many cases are not possible, until such a judgement can be made it is still deemed important to continue surveillance. There are thus demands for large numbers of food and beverage samples to be analysed, and because of the 'sensitive' nature of contamination of something as important as 'our food' it is often necessary for positive results to be confirmed unequivocally. These demands are, however, against a worldwide background of 'cut-backs' and reductions in manpower both in Government service and in industry, with the result that automated techniques or rapid methods with low manpower commitments have become very attractive. Hence, methods which are highly specific and can be used on samples with a minimal preparation and clean-up are the methods of the future and hose receiving most attention in research laboratories active in method development for trace contaminants. This means that highly expensive instrumentation like mass spectrometers and plasma emission spectrometers, once the province

vi Preface

of the academically orientated research laboratories, are becoming used in more routine applications in surveillance work where the desired specificity can be more easily achieved and minimal time spent on sample preparation.

The aim of this book is to selectively choose a number of specialised techniques in trace analysis which are employed for food contaminants, where there have been important developments in recent years. Each of the techniques is described in simple terms for the non-specialist, and critically appraised by linking to one or more specific food contaminant problems giving key references for the reader who wishes to explore the potential of the methods in more depth.

The much neglected clean-up technique of size exclusion (gel permeation) chromatography is discussed and illustrated for a variety of problem areas as are immunological methods for drug residues in meat, both areas being more familiar to workers in biochemical and clinical fields, only recently becoming established in food science. Headspace gas chromatography has found wide application to trace analysis of foods and beverages and the chemiluminescence detector (TEA) is now widely used for nitrosamine monitoring, but both techniques are probably only well known to the specialists and their inclusion in this text should indicate their possibilities to a wider audience. High performance liquid chromatography is of course now a part of the instrumentation of most analytical laboratories but there have been recent developments in detectors and columns, and the advantages and limitations of these are discussed in relation to the important contamination area of mycotoxins. Recent advances in the measurement of inorganic elements is also covered, critically discussing both the neglected aspects of sample preparation through to recent innovations in instrumentation. Finally, the specialised confirmatory technique of mass spectrometry (selected ion monitoring) is discussed. once again for the non-spectroscopist attempting to outline the important features and how these may find application in the reader's own field.

It is hoped that this book will provide a starting point for the analytical chemist unfamiliar with some of the newer applications of techniques in food contaminant analysis. Also, others less familiar with the subject may gain an appreciation of the stimulating and challenging problems for the future in the analysis of trace contaminants in foods.

JOHN GILBERT

List of Contributors

RAYMOND D. COKER

Mycotoxins Section, Tropical Development and Research Institute, 56-62 Gray's Inn Road, London WC1X 8LU, UK

JOHN GILBERT

Ministry of Agriculture, Fisheries and Food, Food Laboratory, Haldin House, Queen Street, Norwich NR2 4SX, UK

RAYMOND J. HEITZMAN

Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berkshire RG160NN, UK

J. BENTON JONES JR

Department of Horticulture, Plant Science Building, University of Georgia, Athens, Georgia 30602, USA

BRUNO KOLB

Bodenseewerk Perkin-Elmer and Co GmbH, Postfach 1120, D-7770 Überlingen, Federal Republic of Germany

RICHARD A. SCANLAN

Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, USA

M. J. SHEPHERD

Ministry of Agriculture, Fisheries and Food, Food Laboratory, Haldin House, Queen Street, Norwich NR2 4SX, UK

Contents

	*	*	*		V
Contributors	٠				xiv
d Applications to the Clean-up of Food Samples					-
M. J. Shepherd				*	1
Introduction	×				2
1.1. Objectives		×.			2
1.2. Historical Development		*			4
					6
					6
2.2. Mixed Mechanisms—Gel Chromatography			*		10
2.3. Solubility Parameter Treatment		*			12
					18
2.5. Optimisation of Chromatography					23
2.5.1. Column Dimensions		*			24
2.5.2. Column Loading		w.			26
2.5.3. Column Temperature		*			26
					27
The Influence of Solvent and Gel on Solute Retention	1				29
					29
3.2. Solute-Gel Interactions					32
					35
					35
4.2. Determination of SEC Distribution Coefficient					38
	e Exclusion and Gel Chromatography: Theory, d Applications to the Clean-up of Food Samples Analysis M. J. Shepherd Introduction 1.1. Objectives 1.2. Historical Development Fundamental Considerations 2.1 Mechanism of Size Exclusion Chromatography 2.2. Mixed Mechanisms—Gel Chromatography 2.3. Solubility Parameter Treatment 2.4. The Concept of Molecular Size 2.5. Optimisation of Chromatography 2.5.1. Column Dimensions 2.5.2. Column Loading 2.5.3. Column Temperature 2.5.4. Resolution The Influence of Solvent and Gel on Solute Retention 3.1. Solvent Effects 3.2. Solute—Gel Interactions Practical Aspects 4.1. The Gels	e Exclusion and Gel Chromatography: Theory, Id Applications to the Clean-up of Food Samples for Analysis M. J. Shepherd Introduction 1.1. Objectives 1.2. Historical Development Fundamental Considerations 2.1 Mechanism of Size Exclusion Chromatography 2.2. Mixed Mechanisms—Gel Chromatography 2.3. Solubility Parameter Treatment 2.4. The Concept of Molecular Size 2.5. Optimisation of Chromatography 2.5.1. Column Dimensions 2.5.2. Column Loading 2.5.3. Column Temperature 2.5.4. Resolution The Influence of Solvent and Gel on Solute Retention 3.1. Solvent Effects 3.2. Solute—Gel Interactions Practical Aspects 4.1. The Gels	e Exclusion and Gel Chromatography: Theory, Med Applications to the Clean-up of Food Samples for a Analysis M. J. Shepherd Introduction 1.1. Objectives 1.2. Historical Development Fundamental Considerations 2.1 Mechanism of Size Exclusion Chromatography 2.2. Mixed Mechanisms—Gel Chromatography 2.3. Solubility Parameter Treatment 2.4. The Concept of Molecular Size 2.5. Optimisation of Chromatography 2.5.1. Column Dimensions 2.5.2. Column Loading 2.5.3. Column Temperature 2.5.4. Resolution The Influence of Solvent and Gel on Solute Retention 3.1. Solvent Effects 3.2. Solute—Gel Interactions Practical Aspects 4.1. The Gels	e Exclusion and Gel Chromatography: Theory, Method Applications to the Clean-up of Food Samples for Cot Analysis M. J. Shepherd Introduction 1.1. Objectives 1.2. Historical Development Fundamental Considerations 2.1 Mechanism of Size Exclusion Chromatography 2.2. Mixed Mechanisms—Gel Chromatography 2.3. Solubility Parameter Treatment 2.4. The Concept of Molecular Size 2.5. Optimisation of Chromatography 2.5.1. Column Dimensions 2.5.2. Column Loading 2.5.3. Column Temperature 2.5.4. Resolution The Influence of Solvent and Gel on Solute Retention 3.1. Solvent Effects 3.2. Solute—Gel Interactions Practical Aspects 4.1. The Gels	e Exclusion and Gel Chromatography: Theory, Methodo d Applications to the Clean-up of Food Samples for Conta t Analysis M. J. Shepherd Introduction 1.1. Objectives 1.2. Historical Development Fundamental Considerations 2.1 Mechanism of Size Exclusion Chromatography 2.2. Mixed Mechanisms—Gel Chromatography 2.3. Solubility Parameter Treatment 2.4. The Concept of Molecular Size 2.5. Optimisation of Chromatography 2.5.1. Column Dimensions 2.5.2. Column Loading 2.5.3. Column Temperature 2.5.4. Resolution The Influence of Solvent and Gel on Solute Retention 3.1. Solvent Effects 3.2. Solute—Gel Interactions

viii Contents

		4.3.	Low R	esolution Chromatography	100		. 39
			4.3.1.	Apparatus	*		. 39
			4.3.2.	Methods	1	w i	. 41
		4.4.	HP-SE	C Systems and Two-dimensional Methods		w 1	. 48
		4.5.		ated Systems			
	5.						
				esolution Chromatography			
		J.1.		PS-DVB Gels			
				Sephadex LH-20 and Other Gels			
		50		erformance Chromatography			
	6						
	6.						1979
		Refer	rences		•	(A)	. 00
2.				Techniques for Measuring Veterinary	D	ru	g Re-
	sid	ues in	Farm	Animals, Meat and Meat Products			
		RAY	MOND J	. HEITZMAN			. 73
	1.	Introv	duction				. 73
	2.			Antibodies			
	du	2.1.	Antica	Preparation		*	
		2.1.	2.1.1.		*		
				Formation of Steroid-Protein Conjugate .			
			2.1.3.				
	3.			Antisera and Antibodies			0.4
		3.1.	Introdu			*	. 81
			3.1.1.	Immunisation Procedures-Polyclonal			
				bodies			
			3.1.2.	Monoclonal Antibodies	÷	*	. 83
		3.2.	Charac	terisation of the Antiserum			. 85
			3.2.1.				. 85
			3.2.2.	Titre			
			3.2.3.	Interfering Substances			. 86
			3.2.4.	Specificity			. 86
			3.2.5.	Stability	21		. 86
	4.	Prena		f Labelled Ligands			. 87
	100	4.1.	Introdu	iction			
		4.2.		abelled Ligands			
		7.2.	4.2.1.	Tritiated Ligands			. 87
				125 Iodine Ligands	*	:00	
		4.3.	4.2.4.	Tobala	*	*	. 90
				e Labels		*.	, 90
	-	4.4.	Other		50		. 92
	5.			echniques			
		5.1.	Introdu				
				Charcoal Absorption			
				Second Antibody Method			
			5.1.3.	Immobilised Antibody	*		. 94
			514	Immobilised Analyte			94

		Contents
	6.	Extraction Procedures
		6.1. Introduction
		6.1.1. Reagent Blanks
		6.1.2. Sample Preparation
		6.1.3. Quality Control Samples
		6.1.4. Solvent Extraction
		6.1.5. Chromatography
		6.1.6. Column Chromatography
		6.1.7. Paper Chromatography 9
		6.1.8. High Performance Liquid Chromatography
		(HPLC)
	7.	Computation of Results
1	8.	Immunoassay Procedures—Conditions and Validation 10
		8.1. Introduction
		8.1.1. Antiserum or Antibody Dilution Curves 10
		8.1.2. The Incubation Procedure
		8.2. Precision
		8.2.1. General Points
		8.2.2. Variation Within and Between Assays and Be-
		tween Laboratories 10
		8 2.3. Standard Curves
		8.2.4. Parellelism, Effect of Biological Extracts and
		Limit of Detection
		8.3. Summary
	9.	Comparison of Immunoassay with Other Methods 10
		9.1. Introduction
10	0.	Screening and Monitoring Residues
		References
* 1	An	alysis of Food Contaminants by Headspace Gas Chromatog
1	rap	hv
	e callo	
		Bruno Kolb
	1.	Introduction
	2.	Instrumentation
		2.1. Headspace Sampling with Gas-tight Syringes 120
		2.2. Headspace Sampling Systems with Constant Pressure . 120
		2.3. Design of Headspace Vials and Closure Septa

7.	Comparison of immunoassay with Other Wethods	1.00
	9.1. Introduction	108
0.	Screening and Monitoring Residues	109
	References	
		1.1.1
An	nalysis of Food Contaminants by Headspace Gas Chroma	tog-
rat	phy	
	BRUNO KOLB	117
	DROSS ROLD	11/
1.	Introduction	118
2.	Instrumentation	
	2.1. Headspace Sampling with Gas-tight Syringes	120
		-
	The state of the s	120
~	2.3. Design of Headspace Vials and Closure Septa	121
3.	Methods for Quantitative Headspace Analysis	122
	3.1. Fundamental Aspects of Quantitative Headspace Analysis	122
	3.2. Headspace Linearity	123
	3.3. Internal Standard Method	126
	3.4. External Standard Methoc	126
	3.5. Method of Standard Addition	127
	3.6. The Method of Multiple Headspace Extraction (MHE)	127
	3.6.1. Calibration of the Area Total by an External	
	Standard Technique	129
	ominate totalique	129

		3.6.2. Calibration of the Area Total by an Interna	al
		Standard Technique	. 130
	4.	Application of HSGC to the Analysis of Food Contaminants	
		4.1. Introduction	. 131
		4.2. Headspace Analysis of Volatile Contaminants in Food	
		and Beverages	
		4.2.1. General	. 131
		4.2.2. HSGC of Residues from Extraction Solvents .	. 132
		4.2.3. HSGC of Residues from Volatile Food Preserva	
		tives	
		4.2.4. HSGC of Volatile Pollutants in Water	. 134
	-	4.2.5. HSGC of Solid Food Samples	
	5.	Headspace Analysis of Volatile Food Contaminants from Pack	
		aging Material	. 145
		5.1. General	. 145
		5.2. Contamination of Foods and Beverages by Migratio	n
		from the Packaging Material	. 145
		5.3. Application of HSGC to the Analysis of Packagin	g
		Material	. 148
		5.3.1. General	
		5.3.2. Possibilities for HSGC of Solid Samples	. 148
		5.3.3. HSGC of Residual Solvents in Printed Films .	
		References	7.2
4.	De	elopments in the Measurement of Trace Metal Constitu	ents in
	For	-	
	2.0		
		I RENTON TONES ID	157
		J. BENTON JONES JR	. 157
	1.		
	1. 2.	Introduction	. 157
		Introduction	. 157 . 160
		Introduction	. 157 . 160 . 160
	2.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding	. 157 . 160 . 160 . 161
		Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction	. 157 . 160 . 160 . 161
	2.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation	. 157 . 160 . 160 . 161 . 161
P.	2.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing	. 157 . 160 . 160 . 161 . 161 . 162 . 170
r	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing	. 157 . 160 . 160 . 161 . 161 . 162 . 170
r.	2.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 172
r	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry	. 157 . 160 . 160 . 161 . 161 . 162 . 170 . 172 . 172
r.	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy	. 157 . 160 . 160 . 161 . 161 . 162 . 170 . 172 . 178 . 179
*	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy	. 157 . 160 . 160 . 161 . 161 . 162 . 170 . 172 . 172 . 178 . 179
ħ.	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry	. 157 . 160 . 160 . 161 . 161 . 162 . 170 . 172 . 172 . 178 . 179 . 179 . 184
r	3.	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS)	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 178 . 179 . 179 . 179 . 184 . 184
r	 3. 4. 	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS) 4.4. X-ray Fluorescence and Electron Probe Spectroscopy	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 178 . 179 . 179 . 179 . 184 . 184
ř.	 3. 4. 	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS) 4.4. X-ray Fluorescence and Electron Probe Spectroscopy 4.5. Activation Analysis	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 178 . 179 . 179 . 184 . 184 . 194
<i>*</i> :	 3. 4. 	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS) 4.4. X-ray Fluorescence and Electron Probe Spectroscopy 4.5. Activation Analysis 4.6. Electrochemical Methods	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 178 . 179 . 179 . 184 . 184 . 194 . 194 . 194
٠.	 3. 4. 	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS) 4.4. X-ray Fluorescence and Electron Probe Spectroscopy 4.5. Activation Analysis 4.6. Electrochemical Methods 4.7. Other Analytical Techniques	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 172 . 178 . 179 . 184 . 194 . 194 . 194 . 194
en Co	 3. 4. 	Introduction Sample Preparation 2.1. Drying 2.2. Grinding Organic Matter Destruction 3.1. Wet Oxidation 3.2. Dry Ashing 3.3. Wet Oxidation Versus Dry Ashing Elemental Determination 4.1. Colorimetry 4.2. Emission Spectroscopy 4.2.1. Atomic Plasma Spectroscopy 4.2.2. Flame Emission Photometry 4.3. Atomic Absorption Spectrometry (AAS) 4.4. X-ray Fluorescence and Electron Probe Spectroscopy 4.5. Activation Analysis 4.6. Electrochemical Methods	. 157 . 160 . 161 . 161 . 162 . 170 . 172 . 172 . 178 . 179 . 184 . 194 . 194 . 194 . 194

5.		gh Performance Liquid Chromatography and Other Chemica antification Methods Used in the Analysis of Mycotoxins is	
	-	ods	
	H.O	RAYMOND D. COKER	17
	1.	Introduction	
		1.1. The Aflatoxins	
		1.2. Ochratoxin A	
		1.3. Citrinin	-
		1.4. Patulin	-
		1.5. Penicillic Acid	
		1.6. The Trichothecenes	2
		1.7. Zearalenone	3
	2.	The Control of Mycotoxin Contamination	4
		2.1. Introduction	4
		2.2. The Analytical Sequence	5
		2.2.1. Sampling 21	5
		2.2.2. Sample Preparation	7
		2.2.3. Assay Methods	2
-31	3.	The Choice of an Appropriate Assay Method	
		3.1. Introduction	6
		3.2. The Efficiency of an Assay	
		3.2.1. Accuracy	
		3.2.2. Precision	
		3.2.3. Automation	
		3.2.4. Simplicity	
		3.2.5. Selectivity and Sensitivity	
		3.2.6. Speed	-
		3.2.7. Cost	
	4.	Quantification Methods for Mycotoxins	
	- F +	4.1. Thin Layer Chromatography (TLC)	
		4.1.1. Introduction	
		4.1.2. The Aflatoxins	
		4.1.3. Other Mycotoxins	
		4.2. High Performance Thin Layer Chromatography	7
		(HPTLC)	A
		4.3. High performance Liquid Chromatography (HPLC) 24	
			-
		4.3.2. Other Mycotoxins	-
		4.4. Gas-Liquid Chromatography (GLC)	15
		4.4.1. Patulin	
		4.4.2. Zearalenone (F-2)	
		4.4.3. Deoxynivalenol (Vomitoxin) and T-2 Toxin 24	
		4.5. Immunoassay Methods	
		4.6. The Fluorotoxinmeter (FTM)	
		4.7. Other Methods	

xii Contents

		5.1. Aflatoxin M ₁ in Milk	255
		5.2. The Anatoxins in Corn	256
		5.3. T-2 Toxin in Corn	257
	6.	Future Developments	257
		References	258
		6	
	0	-Ction and Organtification of Trace Organic Food Co	· mtn
6.		nfirmation and Quantification of Trace Organic Food Co nants by Mass Spectrometry-Selected Ion Monitoring	PER CAR
	REFE		
		JOHN GILBERT	265
	1.	Introduction	266
	2.	Basic Instrumentation	269
	3.	Selected Ion Monitoring (SIM)	271
		3.1. Single Ion Monitoring	272
		3.2. Multiple Ion Monitoring	274
		3.3. High Resolution Selected Ion Monitoring	276
	4.	Chemical Ionisation	277
		4.1 Negative Ion Chemical Ionisation	278
	5.	Mixture Analysis	280
		5.1. Probe Analysis	280
		5.2. Tandem Mass Spectrometry (MS-MS)	282
		5.3. Combined Liquid Chromatography-Mass Spectroscopy	202
		(LC-MS)	284
	6.	Quantification by Selected Ion Monitoring	285
	7.	Selected Examples of Applications of SIM	288
	/ .	7.1. Food Packaging Monomers as Contaminants through	200
			288
		Migration	400
			294
			301
	0	7.4. Veterinary Drug Residues in Meat and Meat Products .	308
	8.	Conclusions	314
		References	315
		The state of the s	
7.	Ch	emiluminescence for Measurement of N-Nitrosamines in Fo	
		RICHARD A. SCANLAN	321
	1.	Introduction	322
	2.	Concept of Chemiluminescence for Nitrosamine Detection	323
	do .	2.1. Pyrolyser	323
		2.2. Cold Trap	324
		2.3. Reaction Chamber	324
		2.4. Sample Introduction	326
	2		328
	3.	Advantages and Limitations of Chemiluminescent Detection .	328
		5 I Senetriuru	

Contents

xiii

	3.2.	Selectivity	ec := :	333
		3.2.1. N-Nitro Compounds		334
		3.2.2. C-Nitroso and C-Nitro Compounds		334
		3.2.3. O-Nitroso and O-Nitro Compounds		335
		3.2.4. Other TEA Responsive Compounds		335
		3.2.5. Scheme to Distinguish N-Nitroso Compour		
		from Interfering Compounds		337
4	Com	parison of the Chemiluminescent Detector with Oth		
		ectors Used for Nitrosamine Analysis		337
	4.1.			338
	4.2.	Polarography		338
	4.3.	Alkali Flame Ionisation		340
	4.4.		he	
		Hall Detector		341
	4.5.	Quantification by Mass Spectrometry		342
	4.6.	Which Detector is Best?		344
5	Proce	edures for Analysis of Volatile Nitrosamines in Foods		344
	5.1.	그러워 한 사람, 뭐 하는 데 아마이트 중에서는 사이는 그 그리지만 되어서 되는 데이트, 이 아마스 아마스 아마스 아마스 아마스 그리고 있다.		345
		5.1.1. Vacuum Distillation		345
		5.1.2. Atmospheric Distillation		348
	5.2.	Rapid Screening Procedures		348
	5.3.	Confirmation of Identity		351
		5.3.1. High Resolution Mass Spectrometry		351
		5.3.2. Low Resolution Mass Spectrometry		352
	5.4.	Artifacts		356
6	Non-	-volatile Nitrosamines		358
	6.1.	Detection by GC-TEA		359
	6.2.	Detection by HPLC-TEA		360
		Other Detection Methods for HPLC Eluates		366
7.	Dete	ermination of Total N-Nitroso Compounds		366
8		clusions		368
0.		rences		369
	1010	************	6 × 1	209
Too door				
LIMBULL				377

Size Exclusion and Gel Chromatography: Theory, Methodology and Applications to the Clean-up of Food Samples for Contaminant Analysis

M. J. SHEPHERD

Ministry of Agriculture, Fisheries and Food,* Food Laboratory, Norwich, UK

SUMMARY

The application of size exclusion (gel permeation) chromatography (SEC) and gel chromatography (GELC) to the clean-up of food samples for trace analysis is reviewed. Gel chromatography is defined as the combination of exclusion with partition or sorption of solutes to the gel matrix. The theoretical basis of each mode of chromatography is considered with reference to the relationship between solute structure and retention. The influence of solvent choice upon the separation mechanism is discussed in terms of solventity parameter theory, and those solvent-solute and gel-solute interactions which may be expected to contribute to resolution in typical chromatographic systems are described in detail.

The practical aspects of setting up an SEC or GELC system are discussed with regard to the selection of gel and apparatus. Optimisation of chromatography is outlined and a full description of operating procedures is given to enable the analyst with little or no experience of SEC or GELC to establish a working system. High performance methods (HP-SEC) and automated instruments for high performance and low resolution chromatography are also described. The latter include both commercially available instruments and those which may be assembled in the laboratory using HPLC and other components. Finally, trace analysis applications of SEC, GELC and HP-SEC are discussed.

^{*}The mention of individual manufacturer's products does not imply that they are endorsed or recommended by the UK Ministry of Agriculture, Fisheries and Food over other similar products not named.

1. INTRODUCTION

1.1. Objectives

Sample clean-up occupies probably a greater proportion of the time spent on trace level determination of organic species than any other aspect of analysis. This is particularly the case where a food matrix is involved because of the great number of potentially interfering compounds present. The advent of highly automated instrumental methods of analysis and the use of computers for subsequent data handling has exacerbated this problem.

Thus it is highly desirable that the process of sample clean-up should similarly be automated, releasing manpower for more productive tasks. There are some signs that progress is being made towards this end but we are still very much in the early stages of developing automated methods of clean-up. Typically, sample preparation entails a sequence of one or more steps, consisting of solvent extraction, liquid-liquid partition and column chromatographic separations of numerous kinds. It is the objective of this chapter to describe the application of size exclusion chromatography (SEC) and gel chromatography (GELC) to the isolation and analysis of low molecular weight (less than about 1000 daltons) organic compounds present in foods at trace level concentrations of 1 mg/kg or lower. A combination of review of theory and applications will be presented, together with a discussion of the methodology involved, in sufficient practical detail to permit an assessment to be made of the potential utility of either technique as part of the solution to individual clean-up problems.

Although the emphasis will be placed upon the advantages and disadvantages of automated GELC or SEC as a 'unit process' for incorporation into any scheme for sample clean-up, it should be recognised that both chromatographic modes have unique selectivities which can be of advantage even when the methodology has to be applied manually.

This combination of chromatographic methods has been chosen for review because SEC and GELC are essentially two aspects of one system. Many column liquid chromatography (LC) packings are structurally classified as gels; that is, they contain two interdispersed phases, one being a solid but porous matrix and the other a fluid such as an LC eluent. Aerogels (represented by silica gel) are rigid and their porosity is unaffected by applied pressure or removal of solvent. Xerogels, typified by the Bio-Beads (Bio-Rad Inc.) range of poly (styrene-

divinylbenzene) co-polymer beads and the Sephadex (Pharmacia) cross-linked dextrans, are much softer and will swell extensively when solvated with compatible liquids. They are liable to undergo significant changes in volume when equilibrated with a different solvent and their particle shape to deform under pressure. The internal solvent phase should be thought of as contained equally in the spaces around and between the interconnected matrix polymer chains rather than being confined to a system of discrete pores, such as exist in aerogels.

Either type of structure can separate molecules on the basis of size, as will be discussed in Section 2.1, and in many instances the gel matrix also participates in the separation mechanism (Section 2.2). SEC can be considered to be the limiting case of GELC where the matrix has no interaction with either solute or solvent. It should be noted that the term 'gel chromatography' is restricted here to those systems where separations are not due to SEC alone but to SEC in combination with adsorption or partition effects. Thus ion exchange and such well-defined phenomena as chelation are not considered explicitly, although the potential exclusion properties of the gel matrixes concerned should not be ignored.

One further motive for the compilation of this text is the current lack of a comprehensive single source of information for the analyst using either GELC or SEC as a tool for sample clean-up. SEC as applied to the separation of biological macromolecules or as a means for determining polymer molecular weight distributions has been extensively reviewed. 1-5 Possibly, because of a general tendency to consider exclusion chromatography as a technique useful only to polymer chemists or biochemists, the area of small molecule SEC (arbitrarily limited here to compounds with molecular weights of less than 1000 daltons) has been relatively neglected except by investigators concerned with elucidating the mechanisms operating in the separation of macromolecules. Again, the interface between GELC and SEC has been of interest to theoreticians but it has not before been considered with an emphasis on the practical requirements of sample clean-up. Among a number of publications of interest in this context is a review article by Walter and Johnson on the dimensional separation of low molecular weight compounds⁶ which also employs the solubility parameter concept (Section 2.3) to examine the relationship between SEC and GELC.

Furthermore, although both SEC and GELC have been employed as complete or partial clean-up procedures for a wide range of compounds in food or environmental samples, no single source of references is available. In many cases, the use of SEC or GELC is not mentioned in publication titles, key words or abstracts, and in consequence it has been difficult to obtain an overview of this application. Although it is possible to gain some appreciation of potential applications of these methodologies from literature compilations supplied by the manufacturers of gels and instrumentation, it seemed desirable to take this opportunity to present a more complete account of the range of applications reported in the area of clean-up of food and similarly complex samples for the analysis of contaminants and other trace level low molecular weight components.

1.2. Historical Development

Size exclusion chromatography is the preferred name⁷ for the two independently evolved techniques of gel filtration (GF) and gel permeation chromatography (GPC). Other synonyms include molecular sieve and steric exclusion chromatography. GF and GPC differ essentially only in terminology. Gel filtration indicates the use of aqueous eluents to fractionate biological molecules, whilst in GPC organic solvents are employed to obtain molecular weight distribution and other information vital to the plastics and coatings industries. High performance variants of each have been developed in recent years and these will collectively be abbreviated as HP-SEC.

SEC is a form of chromatography where solutes are (ideally) separated solely upon the basis of differences in molecular 'size'. Gel chromatography employs the same range of column packings but with solvents chosen to introduce sorption, partition, hydrogen bonding and other effects into the separation in order to influence selectivity. Early workers attempting to develop 'pure' SEC soon realised8 that these apparently confounding forces could be utilised to improve upon the inherently limited resolution of exclusion chromatography. Various aspects of the history of the development of SEC have been described by Synge,9 Moore10 and Anderson et al.5 GF first became practicable following the introduction by Porath and Flodin in 1959 of the Sephadex cross-linked dextrans¹¹ and rapidly became indispensable to the study of peptides, proteins and other macromolecules. Matrixes compatible with organic solvents were reported by Vaughan12 and Cortis-Jones¹³ but these suffered from mechanical instability and other disadvantages. In 1964, however, Moore introduced the term GPC and

此为试读,需要完整PDF请访问: www.ertongbook