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PREFACE

For more than 40 years, the serial publication Advances in Heat Transfer
has filled the information gap between regularly published journals and
university-level textbooks. The series presents review articles on topics of
current interest. Each contribution starts from widely understood principles
and brings the reader up to the forefront of the topic being addressed. The
favorable response by the international scientific and engineering commu-
nity to the 38 volumes published to date is an indication of the success of
our authors in fulfilling this purpose.

In recent years, the editors have published topical volumes dedicated
to specific fields of endeavor. Examples of such volumes are volume 22
(Bioengineering Heat Transfer), volume 28 (Transport Phenomena in
Materials Processing), and volume 29 (Heat Transfer in Nuclear Reactor
Safety). The editors intend to continue publishing topical volumes as well
as the traditional general volumes in the future. Volume 32, a cumulative
author and subject index for the first 32 volumes, has become a valuable
tool to search the series for contributions relevant to their current research
interests.

The editorial board expresses its appreciation to the contributing authors
of Volume 38 who have maintained the high standards associated with
Advances in Heat Transfer. We also would like to welcome Professor Avram
Bar-Cohen who joins the editorial board of Advances in Heat Transfer with
the publication of this volume. Lastly, the editors would like to acknowledge
the efforts of the staff at Academic Press and Elsevier Inc. who have
maintained the attractive presentation of the volumes over the years.

Xi
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Physical Water Treatment for Fouling
Prevention in Heat Exchangers

Y.I. CHO', A.F. FRIDMAN', S.H. LEE', and W.T. KIM?

"Department of Mechanical Engineering and Mechanics, Drexel
University, Philadelphia, PA 19104, USA
2Physical Water Treatment Center, Phoenixville, PA 19460, USA

I. Introduction

A. BACKGROUND

Physical water treatment (PWT) is an attempt to treat hard water for the
purpose of preventing or mitigating fouling using a physical means, without
adding chemicals to water. PWT has a long history of applications. Early
patents for PWT devices were issued almost 100 years ago [1]. Numerous
field applications of various PWT devices have been made and resulted in
both successful and unsuccessful case studies. After 100 years of field
applications, scientists are still looking for the operating principle and
mechanism of PWT, and there are several proposed mechanisms as
summarized in several articles [2-11].

The goal of PWT technology is to prevent or mitigate scale build-up at
heat exchangers. Figure 1 shows that scaling (or fouling) problems involve
three different academic disciplines: physics, chemistry, and mechanical
engineering (heat transfer). The fouling problem starts because of hard
water being heated inside heat transfer equipment. The precipitation of
dissolved mineral ions and subsequent scale deposit on the heat transfer
surface critically depend on water chemistry. In addition to water chemistry,
the deposit and removal rates of scale also depend on flow velocity, heat
flux, and heat exchanger geometry. The PWT tools we attempt to use to
solve the fouling problem are governed by various laws of physics. Hence,
we need to include all three disciplines to study the PWT technology. In
general, PWT (without a filtration system) is not a bona fide water-softener
as it does not remove any mineral ions from water. Neither does PWT add
anything to water. Given that PWT does not change anything in the
structure of water molecules, one may not expect to detect any changes in
Advances in Heat Transfer 1 Copyright © 2004 Elsevier Inc.
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Fouling in
Heat Exchanger

Water
Chemistry

FiG. 1. Scaling problem involves three different disciplines.

water characteristics even with sophisticated analytical tools. If the benefit
of PWT takes place at the heat transfer surface, one should carefully
examine the fouling mechanism at heat exchangers.

The field of fouling is a unique area of research in mechanical
engineering where a large number of papers and books have been published
[12—-18]. Billions of dollars are spent each year in the maintenance and
replacement of heat transfer equipment that has been coated with various
forms of scale through the fouling process [5]. A large amount of money
and labor would be saved if these effects could be fully understood and
controlled.

Let us briefly examine why the fouling problem exists. Due to the large
amount of carbon dioxide released from various combustion sources,
rain-water becomes acidic and absorbs mineral ions (mostly calcium) by
dissolving limestone in subterranean aquifers [19]. These ions, when trans-
ported through piping in ordinary plumbing systems can form scaling.
Scaling typically occurs when water with a high concentration of these
ions is subjected to a change in temperature, which forces these ions out of
solution. For every solute and solvent combination, there is a character-
istic amount of solute that will dissolve under a given condition such as
temperature, pressure, and pH. The solubility of a substance is the amount
that will dissolve in a given solvent to produce a saturated solution [20].
Two forms of solubility are possible: normal and inverse. Some salts have
greater solubility as the temperature is raised; these salts are called nor-
mal solubility salts, and examples include NaCl, NaNOs, and silica. Other
salts show less solubility as the temperature is raised, usually termed
inverse solubility salts such as CaCO3, CaSQO,4, and MgSiO; [20]. Due to
the heating (or cooling) process in thermal equipment, the temperature-
dependent solubility leads to a supersaturated state. Calcium carbonate
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has an “‘inverse solubility”, which as a result, drives the ions out of solution
at a high temperature. This often accounts for crystallization fouling in
and around heat exchangers [13,15,18]. Thus, calcium carbonate scaling is
one of the most common scale problems in many heat exchangers where
water is used as a cooling medium.

The study on the effect of magnetic or electric fields on the fouling
behavior of hard water is relatively new. Despite numerous positive results,
however, there has been very little data that define the parameters
that control the interactions between water and magnetic or electric fields.
There is consequently much skepticism in the scientific community over
the effects of these magnetic and/or electric devices, since a majority of
the hard science has been replaced with claims based on inaccurate or
misleading principles.

In order to understand the mechanism of PWT, we should find the
passageway between the PWT and fouling mitigation. The key to the
passage appears to be the phenomenon of bulk precipitation, a chemical
process which may be affected by a number of parameters including the
external applications of magnetic or electric fields.

B. CRYSTALLIZATION AND PARTICULATE FOULING

In order to explain the mechanism of PWT, we briefly review two types of
fouling: crystallization and particulate fouling. Although PWT has been
used for fouling mitigation in various heat exchangers, the highest con-
sistency in successful applications of PWT have been reported in heat
transfer equipment in cooling tower water loops, where the repetitive
treatment of PWT in recirculating cooling systems may have contributed
to success.

Circulating cooling tower water contains an excess amount of mineral
ions such as calcium and magnesium due to the evaporation of water,
making the circulating water hard even if the make-up water is relatively
soft. When hard water is heated inside heat transfer equipment, the
calcium and bicarbonate ions precipitate due to the changes in solubility,
forming hard scale on heat-transfer surfaces and clogging heat exchanger
pipes and manifolds. When any undesirable material deposits on a heat
exchanger surface, it is called fouling [12-18].

When the circulating water is not treated, one often finds hardened scale
depositing on the heat transfer surface (Fig. 2a). This is due to crystal
formation on the heat-transfer surface, often known as crystallization
fouling. Factors affecting nucleation and subsequent crystal formation
are the concentration of fouling materials (foulants), temperature, pH,
pressure, time, flow velocity, mechanical motions, radiation, and impurities.
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Crystallization fouling Particulate fouling

Hard Scale Soft Scale
(a) )

F1G. 2. Sketches of crystallization and particulate foulings.

Mechanical motions include shaking, mixing, and friction, which can be
characterized as turbulence.

The initial crystals formed by a precipitation reaction may not be the
most stable solids (i.e., thermodynamically stable phase) for reaction
conditions. Over a period of time, however, the crystal structure changes to
that of a stable phase. This change may be accompanied by additional
precipitation from solution. A phenomenon, called ripening, may also take
place whereby the crystal size of the precipitate increases [1]. Such hardened
scale is common in heat transfer equipment using untreated water as a
cooling medium. It is well known that such hardened scale cannot be
removed by brush punching. Acid cleaning is often required to remove
the hardened scale, which may cause premature equipment failure and
replacement as well as producing chemical wastes for disposal.

Particulate fouling is a deposition process of particles carried by a flowing
fluid as well as by matters generated in a solution. When compared with
the scale produced in crystallization fouling, the scale produced in
particulate fouling is much softer, as illustrated by Fig. 2b. The term
“particle” is general and may refer to particulate matter, bacteria, corrosion
products, and so on. The term “particle™ also refers to particles that may
be generated at the surface, such as the products of chemical reaction or
crystallization [12]. The arrival of particles at a surface can take place by
two mechanisms, i.e., gravitational settling or particle transport.

Beal [21] categorized the particulate fouling into three major processes:
transport of the particles from the bulk fluid to the surface, the attach-
ment of the particles to the surface, and re-entrainment of previously
deposited particles from the surface back into the bulk fluid. Bott [12]
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divided particle deposition into transport mechanism and agglomeration.
First the particle has to be transported to the surface by one or a com-
bination of mechanisms including Brownian motion, turbulent diffusion,
or by virtue of the momentum possessed by the particle. Other factors that
must be borne in mind in a consideration of the particle deposition include
the agglomeration of particles in the bulk or at or near the surface, and the
complex interactions of the forces near the wall.

It is of note that calcium bicarbonate is used to represent a group of
mineral salts that deposit as foulants on the surface of a heat exchanger.
Calcium carbonate is one of the most common scale types in cooling
tower applications. The two structures of calcium carbonate crystal
commonly found in nature are calcite and aragonite in morphology. They
have the same chemical component, CaCOs;, but differ in many aspects.
Calcite is formed at room temperature (i.e., below 30°C), easily removable
with weak hydrochloric acid, is less adherent than aragonite, and has
a hexagonal crystal shape with a specific gravity of 2.71 [1]. Aragonite is
formed at high temperature (i.e., above 30°C) and is difficult to remove,
having an orthorhombic crystal shape and a specific gravity of 2.94 [1].
Aragonite is a more troublesome form of calcium carbonate than cal-
cite because it forms a harder and denser deposit than calcite in boilers and
other heat transfer equipment [1]. It has been of interest to see whether
calcium carbonate scales produced in water treated by a PWT device is
calcite or aragonite.

C. DEVICES FOR PHYSICAL WATER TREATMENT

In order to prevent or mitigate the fouling problem, various physical
water treatment (PWT) methods have been applied using one of the
following means: magnetic fields, electric fields, alteration of surface
charges, mechanical disturbance such as ultrasound, vortex flows, and
sudden pressure changes. Magnetic devices in particular have a long and
controversial history in their efficacy and efficiency [1,2,10]. Numerous
researchers investigated the feasibility of using a permanent magnet for
reducing mineral fouling [22-31]. Some of them reported that magnetic
treatment changed water properties and/or produced nucleation sites in
a bulk solution, whereas others reported that it did not work.

Two most common types of permanent magnets are clamp-on magnets
(see Fig. 3a) and magnets positioned at the center of a pipe (see Fig. 3b)
such that water flows through an annulus gap between the pipe and
magnets. Permanent magnets often have magnetic field strength ranges from
2000 to 6000 gauss (0.2-0.6 T). When charged molecules or ions pass
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(a) 5 100 mm o Vinyl tube
) r®
N S| S N 9.27 [12.4
Flow —» S . o

N S] S N| —»He—0.68

|_>® —Fl—iﬂ— 3.85

Section view <A-A>

Flow

(Side view)

(Cut view)

FiG. 3. Sketches of two common geometries of permanent magnets used for PWT.
(a) PMDU (permanent magnet made at Drexel University). test results obtained with this
magnet is identified as MWT(A) in Section 5. Total four permanent magnets were used. an
arrangement that maximized the magnetic treatment on water. The maximum strength of
the magnetic field was measured to be 0.16 T (or 1600 gauss) by using an Alphalab DC
Magnetometer, from Salt Lake City, UT. (b) MWT(B), water moves through annulus gap
between pipe wall and cylindrical magnets.

through a region under magnetic fields, electric fields are induced, which can
be expressed as [32,33]:

E=VxB (1)

where £ is an induced electric field [V/m], V is a flow velocity vector, and
B is a magnetic field strength vector [Wb/m?]. The magnitude of the electric
field induced by permanent magnets at a water velocity of 3.0 m/s becomes
(3 m/s) x (4000 gauss)=1.2 V/m.

Figure 4 shows a sketch of a solenoid coil device. and a method to
measure the induced electric field inside a tube. As shown in Fig. 4a, a
solenoid coil was wrapped over a plastic tube, used only for forming
the solenoid coil into a cylindrical shape; the plastic material has no
affect on the electromagnetic field due to its non-ferrous composition.
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SCED | Solenoid coil
control ||

unit
Pulsating
current ,/ﬂ/

Copper tube

Flow direction Flow to test section

Plastic tube for
offset of coil

(a)
Pickup-wire probe to measure induced
electric field
Copper tube /
- = 7\
C \ U s
Dynamic
/ signal
Solenoid coil analyzer
(cut-away view) (b)

(mV)

Induced electromotive force

Time (msec)

(c)

Fi1G. 4. (a) Installation of an EAF unit and a solenoid coil; The solenoid coil was wrapped
over a plastic tube with an outside diameter (O.D.) of 50 mm. 14-Gauge wire was wound
with 80 turns. Two ends of the solenoid coil were connected to a SCED-control unit.
(b) Measurement of an induced clectric field inside a copper tube; (¢) Induced electromotive
forces generated by a time-varying electric current.

Two ends of the solenoid coil were connected to an electronic control
unit. The copper tube was located at the off-centered position relative to
the solenoid coil since the strength of the induced electric field had a
maximum value at the surface of the coil and a minimum value at the



