Microbeam Analysis 2000

165

Microbeam Analysis 2000

Proceedings of the Second Conference of the International Union of Microbeam Analysis Societies held in Kailua-Kona, Hawaii, 9-14 July 2000

Edited by David B Williams and Ryuichi Shimizu

Institute of Physics Conference Series Number 165
Institute of Physics Publishing, Bristol and Philadelphia

Copyright ©2000 by IOP Publishing Ltd and individual contributors. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, except as stated below. Single photocopies of single articles may be made for private study or research. Illustrations and short extracts from the text of individual contributions may be copied provided that the source is acknowledged, the permission of the authors is obtained and IOP Publishing Ltd is notified. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice-Chancellors and Principals. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients in the USA, is granted by IOP Publishing Ltd to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA. 0305-2346/00 \$30.00+.00

CODEN IPHSAC 165 1-498 (2000)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN 0 7503 0685 8

Library of Congress Cataloging-in-Publication Data are available

Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA

Printed in the UK by J W Arrowsmith Ltd, Bristol

Microbeam Analysis 2000

IUMAS President's Address

IUMAS 2000—the second conference of the International Union of Microbeam Analysis Societies—celebrates the ever-increasing international scope of microanalysis techniques using electron, ion and photon beams. IUMAS, founded in 1994, now comprises eight member organizations: the Australian Microbeam Analysis Society (AMAS), the Brasilian Society for Microscopy and Microanalysis (SBMM), the Microscopy Society of Canada (MSC), the China Joint Committee of Microbeam Analysis, the European Microbeam Analysis Society (EMAS), the Japan Society for the Promotion of Science (JSPS) Committee 141-Microbeam Analysis, the Korean Society for Electron Microscopy and the Microbeam Analysis Society (MAS) of the USA. Following the first AMAS-sponsored meeting in Sydney, Australia in 1996, this second meeting is co-sponsored by the Japanese and US Microbeam Analysis Societies, so the obvious locale is midway between the two countries, in Kailua-Kona, Hawaii, the site of the highly successful MAS meeting in 1987. This meeting promises to be even better, with more than 240 papers and participants from 22 countries, and we look forward enthusiastically to the third meeting in 2004.

The meeting would not have been possible without the financial support of many microscopy/microanalysis companies and organizations listed. These companies and local MAS organizations also helped sponsor ten students from Australia, USA and China to attend the meeting as well as providing help for many invited speakers.

I would also like to thank the other hard-working members of the program committee and local arrangements committee whose names are also listed in this section of the proceedings. Finally, Sharon Coe, the Conference Coordinator in the Materials Science and Engineering Department at Lehigh University, is the person on whom most of the organizational responsibility for the technical program fell. She should take all the credit for what promises to be a fine meeting. Any foul-ups in the technical program organization, the proceedings and program booklet are my responsibility alone. So enjoy the latest in advanced microanalysis techniques, along with the best social and recreational delights that Hawaii has to offer.

David B Williams

Countries represented

Australia, Austria, Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Israel, Italy, Japan, Korea, Netherlands, Poland, Russia, Slovenia, Spain, Sweden, Thailand, UK, and USA.

IUMAS Program Committee

Program Co-Chairs:

David Williams, Lehigh University, USA Ryuichi Shimizu, Osaka University, Japan

Symposium Co-Chairs:

30 years of optical spectroscopy

Edgar Etz, National Institute of Standards and Technology, USA

Neil Lewis, Spectral Dimensions Inc, USA

Shin-ichi Nakashima, Miyazaki University, Japan

Yukihiro Ozaki, Kwansei-Gakuin University, Japan

Advances in X-ray instrumentation

Jon McCarthy, Noran Instruments Inc, USA

Katsushige Tsuno, JEOL Ltd, Japan

X-ray microanalysis of thin specimens

Yoshio Bando, National Institute for Research in Inorganic Materials (NIRIM), Japan

Gilles L'Esperance, Ecole Polytechnique, Canada

Joseph Michael, Sandia National Laboratories, USA

Biological microanalysis

Dale Johnson, University of Southern Florida, USA

Richard Leapman, National Institutes of Health, USA

Kenichi Takaya, Toyama Medical and Pharmaceutical University Faculty of Medicine, Japan

Electron diffraction

Alwyn Eades, Lehigh University, USA

John Mansfield, University of Michigan, USA

Michiyoshi Tanaka, Tohoku University, Japan

Electron energy-loss spectroscopy

Yoshio Bando, National Institute of Research in Inorganic Materials, Japan

Ondrej Krivanek, Nion Inc, USA

John Silcox, Cornell University, USA

Variable pressure and low voltage scanning electron microscopy

Takeo Ichinokawa, Waseda University, Japan

David Joy, University of Tennessee, USA

Monte-Carlo simulations

Eric Lifshin, General Electric Corporate Research and Development, USA

Kenji Murata, Osaka Prefecture University, Japan

Particle microanalysis

Gregory Meeker, United States Geological Survey, USA

Dale Newbury, National Institute of Standards and Technology, USA

Surface analysis

Kazuo Kajiwara, Sony Corporation, Japan

Chuhei Oshima, Waseda University, Japan

Secondary ion mass spectrometry

Renaat Gijbels, University of Antwerp, Belgium

Gregory Gillen, National Institute of Standards and Technology, USA

Scanning probe microscopy/nanomechanics

Seizo Morita, University of Osaka, Japan

Phillip Russell, North Carolina State University, USA

Standardization for microbeam analysis

Yongkang Liu, Guangzhou Institute of Geochemisty, China

Ryna Marinenko, National Institute of Standards and Technology, USA

Quantitative X-ray microanalysis

Joseph Goldstein, University of Massachusetts at Amherst, USA

Ian Harrowfield, Commonwealth Scientific and Industrial Research Organization

Minerals, Australia

General applications session

Ryuichi Shimizu, Osaka University, Japan

David Williams, Lehigh University, USA

Computer workshop

John Mansfield, University of Michigan, USA

Local Arrangements Committee:

Cliff Carlson, Westinghouse Savannah River Laboratory Gordon Cleaver, Schafer Corporation Richard DeVerse, Three LC, Inc Howard Storms, Schafer Corporation

Robert Warner, General Electric (retired)

Previous IUMAS Conference

Sydney, Australia, 1996

Scholarship Winners

Travis C Baroni, The University of Western Australia, Australia
Angela Carden, University of Michigan, USA
Adrian Hightower, California Institute of Technology, USA
Robert Klie, University of Illinois at Chicago, USA
Donovan Leonard, North Carolina State University, USA
Jane Maxwell, CSIRO-Textile and Fibre Technology, Australia
Jesse Nawrocki, Lehigh University, USA
Bao Shujing, Exploration and Development Research Institute of Henan Petroleum
Exploration Bureau, China
Milos Toth, University of Technology, Australia
David Ziegler, University of Massachusetts Lowell, USA

Sponsors

The organizers wish to thank the following organizations for their generous financial support of the student scholarships and technical program:

4pi Analysis Inc

Advanced Microbeam Inc

Cameca Instruments Inc

E A Fischione Instruments Inc

EDAX Inc

ETP-USA/Electron Detectors Inc

FEI Company

FEI/Philips

Gatan Incorporated

Geller Micro Analytical Laboratory

General Electric Corporate Research and Development

Gresham Scientific Instruments Ltd

GW Electronics Incorporated

Hitachi Instruments Inc

JEOL USA Inc

JSPS Committee 141-Microbeam Analysis

Kluwer Academic/Plenum Publishers

Lehigh University Microscopy School

MAS-USA

Noran Instruments Inc

Oxford Instruments America Inc

Princeton Gamma-Tech

R J Lee Instruments Limited

RÖNTEC USA Inc

Sandia National Laboratories

Seattle ICEM Student Scholarship Fund

Ted Pella Inc.

The organizers also wish to thank the following companies for their generous donation of space for advertising:

Australian EM Newsletter

European Microbeam Analysis Society News

Microscopy and Analysis

Microbeam Analysis Society (http://microanalysis.org/)

MicroNews (MAS-USA)

Microscopy Today

Royal Microscopical Society Proceedings

SPI Supplies

Contents

IUMAS President's Address	v
IUMAS Program Committee	vii
Scholarship Winners	ix
Sponsors	x
Plenary symposium	
The role of microanalysis in the characterization of interfaces M Rühle, C Elsässer, C Scheu and W Sigle	1
Nanotechnology: promises and challenges for tomorrow A D Romig Jr, J R Michael and T A Michalske	3
Light microscopy—without lasers, fourier transforms etc W C McCrone	5
Recent progress in Monte Carlo simulation approach to microbeam analysis <i>R Shimizu</i>	7
Symposium 1: 30 years of optical spectroscopy	
Historical developments, state of the art and perspectives of Raman microscopy and microscopy <i>P Dhamelincourt</i>	9
Effective designs of Raman microprobes for confocal and near-field performance S Webster, G D Pitt and D N Batchelder	11
High resolution Raman images of stress in bonded silicon microstructures D J Gardiner and M Bowden	13
Raman microspectroscopy and imaging as probes for the response of bone tissue to mechanical stress A Carden and M D Morris	15
Micro-Raman spectroscopy of photonic device materials: group theory and polarization selection rules D D Tuschel	17

Linear and nonlinear Raman spectroscopy on single microdroplets W Kiefer, J Popp, V E Roman and O Sbanski	19
Spectroscopy of organic and biological single particles on nanometer and micrometer scales using a near-infrared laser Raman trapping system K Ajito and K Torimitsu	21
Visible/near IR Raman and photoluminescence microspectroscopy using CCD and InGaAs dual detectors F Adar, A Whitley, M Leclercq, M Moreau, J Rebello and H Reich	23
Raman imaging of semiconductor materials: characterization of static and dynamic properties S. Nakashima and H. Harima	25
Characterization of carrier and stress distributions in semiconductor devices by cathodoluminescence spectroscopy and Raman microprobe M Yoshikawa, R Sugie and G Katagiri	27
Single-pass spectroscopic and Raman imaging systems—the new developments G D Pitt	29
Detection of interstitial molecules and observation of their micro-segregation using cathodoluminescence microanalysis M A Stevens Kalceff	31
Confocal Raman microscopy—why the depth resolution is much worse than you think! Modelling and measuring the effect of refraction in transparent media <i>N Everall</i>	33
Integrated spectroscopic imaging: applications using micro X-ray fluorescence, micro Raman and micro infrared G J Havrilla and J R Schoonover	35
Current state of the art in Raman microscopy and chemical imaging P J Treado, M P Nelson and T H Myers II	37
Development of infrared microspectroscopy instrumentation and applications J A Reffner	39
FTIR-microspectroscopy of polymers advances into the 21st century! I M Chalmers, N J Everall, M D Schaerberle, I W Levin, E N Lewis, L H Kidder, M Pearson, M A Chesters, L Bozec, H M Pollock and A Hammiche	41
FTIR imaging of phase-separated polymeric systems I L Koenig, S-Q Wang and R Bhargava	43
Microanalysis of human matrices for foreign substances K S Kalasinsky and V F Kalasinsky	45
FTIR photoacoustic spectral depth profiling: putting A G Bell's discovery to work in analytical materials science R A Palmer	47
A I winer	47

	xiii
Analysis of laminates, compositional gradients and isolated regions in polymers by Raman and infrared microscopy M Smith, K Kempfert, M Longmire, F Deck and E Y Jiang	49
Resolution limits for scanning infrared microspectroscopy: theory and practice G L Carr, M Ramotowski and L M Miller	51
'What are the next steps?'—Beyond the current use of FT-IR and FT-Raman biochemical images C P Schultz	53
Multivariate Raman microscopy: application to biological materials and synthetic materials M D Morris, C P Tarnowski and J A Timlin	55
Light scattering and Raman spectroscopy for biomedical analysis and disease diagnosis R R Dasari and M S Feld	57
Infrared microscopic analysis of skin: a comparison of methodologies <i>M Jackson</i>	59
FT-IR microspectroscopy of cells and tissues D Naumann, J Kneipp, C Kirschner, N A Ngo Thi and P Lasch	61
In vivo Raman spectroscopy G J Puppels	63
Infrared microbeam analysis of intricate biological specimens D L Wetzel and S M LeVine	65
Inside living cells: a new vision through optical micro- and nano-spectroscopies G D Sockalingum, H Morjani, F Lei and M Manfait	67
Optical spectroscopy and imaging: application to detection of early gastrointestinal cancer B C Wilson, R DaCosta, M Shim, L Lilge, N Marcon and L M WongKee Song	69
Analysis of the orientational nature of molecules and crystals within biomaterials using Raman microspectroscopy E Wentrup-Byrne, C A Armstrong and R S Armstrong	71
New applications and analytical methods for vibrational spectroscopic imaging EN Lewis, A S Haka, I W Levin and L H Kidder	73
Applications of synchrotron infrared microspectroscopy to the study of biological cells and tissues L M Miller, P Dumas, N Jamin, J L Teillaud, J L Bantignies and G L Carr	75
Infrared microspectroscopy of cells and tissue: infrared spectra and infrared spectral maps of human tissues M Diem, L Chiriboga, A Pacifico and H Yee	77

Comparison of FTIR microspectroscopy methods for analysis of breast tissue samples R K Dukor, G M Story and C Marcott	79
A new portable Raman imaging probe T Ikeda, H Tashiro and Y Ozaki	81
A study of the phase behaviour of polyethylene blends using micro-Raman imaging A van der Pol, R L Morgan, B J Kip, R Ottjes, J van Ruiten, M J Hill and	
P J Barham	83
Raman microscopy in art and archaeology: illumination of historical mysteries H G M Edwards, F Rull Perez and A R David	85
High-pressure infrared synchrotron and Raman microspectroscopy of Earth and planetary materials	
R J Hemley, A F Goncharov, Z Liu, H K Mao and S Merkel	87
Raman microscopy as a non-destructive method for the analysis of minerals IT Kloprogge and R L Frost	89
Advances in fiber-coupled Raman microprobes and chemical mapping I R Lewis, J M Shaver and M L Samford	91
Raman microscopy of kaolinite phases expanded through intercalation with potassium acetate R L Frost and J T Kloprogge	93
Multi-channel confocal micro-Raman spectroscopy of minerals and glasses at ambient and high pressures S K Sharma and T F Cooney	95
Confocal laser-Raman microprobe analysis of radiation-damaged minerals L Nasdala and M Wenzel	97
Effect of signal-to-noise ratio on multivariate curve resolution of Raman spectroscopic image data	
S L Zhang, T M Hancewicz and J J Andrew	99
Field and routine laboratory use of Raman spectroscopy for mineral identification: applications to rocks L A Haskin, A Wang and B L Jolliff	101
Development of a flight Raman spectrometer for the "Athena" rover scientific instrument payload for Mars Surveyor missions	101
A Wang and L A Haskin	103
Evaluation of multi-channel micro-Raman spectrometry for rock analysis P Deb, C H Chio, S K Sharma and D W Muenow	105
New instrumental approaches for vibrational spectroscopic imaging L. H. Kidder, K. S. Haber and E. N. Lewis	107

Quantitation of composition in inhomogeneous polymers with NEXAFS microscopy	
H Ade	109
Segregated phases in flexible polyurethanes by X-ray spectromicroscopy E Rightor, S Urquhart, A Hitchcock, H Ade, G Mitchell, M T Dineen, F Hayes, R Priester and W Lidy	111
Characterization of microscopic variation in crosslink density in polymer gels using scanning transmission X-ray microscopy G Mitchell, L R Wilson, E G Rightor, M T Dineen, F Hayes, S Urquhart, A Hitchcock and H Ade	113
Near-field Raman spectroscopy: electric field gradient effects E J Ayars, M A Paesler and H D Hallen	115
Design and application of an ultra-high spatial resolution mapping system using near-field spectroscopy T Ikeda, Y Narita, T Williams and M Ohtsu	117
Confocal optical imaging in highly scattering media: quantification using photon time-of-flight measurements D H Burns, W F Long and C E W Gributs	119
Raman intensity calibration with glass luminescence standards E S Etz, W S Hurst and S J Choquette	121
Modulations used to transmit information in spectrometry and imaging W G Fateley, R M Hammaker, R A DeVerse and R R Coifman	123
Symposium 2: Advances in X-ray instrumentation	
Microcalorimeter EDS for low voltage microanalysis D A Wollman, D E Newbury, S W Nam, G C Hilton, K D Irwin, D A Rudman, S Deiker, N F Bergren and J M Martinis	125
Design and principles of high resolution microcalorimeter type X-ray spectrometers J Höhne, M Bühler, T Hertrich and U Hess	127
Applications of high resolution microcalorimeter type X-ray spectrometers in material analysis J Höhne, M Bühler, T Hertrich and U Hess	129
Monochromatic X-ray microprobe using doubly curved crystals Z W Chen, M W McColgan and D M Gibson	131
Small area analysis using micro-diffraction techniques R P Goehner, R G Tissot and J R Michael	133
XRMF with capillary optics and low-power micro-focus source D A Carpenter	135

The application of polycapillary X-ray lens in XRF microanalysis Y Yan, X Ding, Q Pan and Y He	137
Development of the multi-energy X-ray generation system with higher intensity than that of synchrotron radiation for X-ray photoelectron diffraction measurements H Ishii, S Shiraki, S Omori, M Owari, M Doi, S Kojima, E Yamada, S Takahashi, K Tsukamoto, T Koshikawa and Y Nihei	139
Symposium 3: X-ray microanalysis of thin specimens	
Modification of ζ -factor method for quantitative X-ray microanalysis in analytical electron microscopy T Fujita, M Watanabe and Z Horita	141
Information obtained by X-ray mapping large sample areas in a FEGSTEM A J Papworth and D B Williams	143
Compositional mapping of nanolayered metal composites V J Keast, H Kung, A Misra and T E Mitchell	145
Automated unbiased information extraction of STEM-EDS spectrum images P G Kotula and M R Keenan	147
STEM X-ray elemental mapping of a cermet Cu-Al ₂ O ₃ (5 wt%) produced by in-situ reduction M S Motta, I G Solórzano, E A Brocchi and P K Jena	149
Atomic structural environment of grain boundary segregated Y in creep resistant alumina C M Wang, G S Cargill III, H M Chan, M P Harmer and D B Williams	151
Investigation of self-absorption correction in thin foil EDS by spectrum modelling <i>J M Titchmarsh</i>	153
Theoretical simulation of probe sizes for microanalysis in AEM <i>M Watanabe and D B Williams</i>	155
Analytical electron microscopy of SmFeTaN-based permanent-magnet materials G Dražič, P McGuiness, K Žužek and S Kobe	157
ALCHEMI for interstitial and sublattice site identification C J Rossouw	159
The application of AEM and APFIM to the analysis of precipitation behavior in alloy 718	161
M G Burke and M K Miller Interface analysis of Si-Al-O-N materials by a 300kV FE-TEM	161
F F Xu, C M Wang, Y Bando and M Mitomo	163
Microstructural and micro-compositional analysis of WC/Co composities, prepared by microwave and conventional thermal sintering A J Papworth, H Jain, D K Agrawal, J Cheng and D B Williams	165
and the state of t	

	xvii
Microanalytical characterization of second phases in melt spun Mg-1.5wt%Ca-6wt%Zn alloys P M Jardim, I G Solórzano, J B Vander Sande and B S You	167
TZP-based composites—an analytical approach M Faryna and K Haberko	169
Microcharacterization of composite membranes of electrospun nanofibers and microparticles D Ziegler, C Sung, T Dolukhanyan and H L Schreuder-Gibson	171
Microanalysis of neutron-irradiated fuel cladding materials D M Farkas and R W Warner	173
A study on the carbide precipitation in a ferritic steel J G Nawrocki, J N DuPont and A R Marder	175
STEM analysis of FIB damage in silicon C Urbanik Shannon, B I Prenitzer, L A Giannuzzi, S R Brown, T L Shofner, B Rossi, C A Vartuli, R B Irwin and F A Stevie	177
Cross-sectional TEM of ceramic interfaces and layers DRG Mitchell, CJ Barbé, DJ Cassidy and DJ Attard	179
Symposium 4: Biological microanalysis	
Imaging of molecular and atomic distributions in biological specimens at high spatial resolution F P Ottensmeyer, J A Davis, Y M Heng and M M G Barfels	181
Data acquisition strategies for determination of subsarcomere Ca distributions using EPXMA	101
M E Cantino, J G Eichen and S B Daniels	183
Strategies for optimizing detection limits in elemental mapping of biological specimens by electron energy-loss spectrum-imaging <i>R D Leapman and S B Andrews</i>	185
Proposal of an electron microscope for biological sample observation H Suga and M Kotera	187
Analytical electron microscopy—an ultimate tool for exploring the environmental living conditions 5300 years ago and nowadays M A Pabst, C Mitterbauer, I Papst and F Hofer	189
Ion microscopy of fresh frozen dried cryosections for ion images K Takaya, L He and M Okabe	191

Symposium 5: Convergent beam and electron backscatter diffraction	
Characterization of deformed microstructures by OIM H Weiland and D P Field	193
An economical approach to miniaturize electron back-scattering diffraction system in a SEM V Thaveeprungsriporn and D Thong-Aram	195
The past and future of convergent-beam diffraction J A Eades	197
Symmetry breakdown in HOLZ lines from the L1 ₂ phase of Al ₃ Ti C J Rossouw and K Tsuda	199
Advances in symmetry analysis by convergent-beam electron diffraction M Terauchi and M Tanaka	201
Ab-initio primitive cell calculations from EBSD patterns J R Michael and R P Goehner	203
Developments in quantitative convergent beam electron diffraction (CBED) M Saunders	205
A comparison of lattice-source and divergent-beam X-ray interferences as well as electron backscattering diffraction for the determination of crystal parameters S Däbritz, E Langer and W Hauffe	207
OIM and EDX determination of the orientation dependence of corrosion in uranium metal D A Carpenter and J S Bullock IV	209
Symposium 6: Electron energy-loss spectroscopy	
High energy-resolution electron energy-loss spectroscopy based on electron microscopy M Terauchi and M Tanaka	211
High brightness monochromator for STEM P E Batson, H W Mook and P Kruit	213
Energy filtering in UHV reflection electron microscopy Y Tanishiro, T Suzuki, N Ishiguro, H Minoda and K Yagi	215
An 0.2eV energy resolution analytical electron microscope M Tanaka, M Terauchi, K Tsuda, K Saitoh, T Honda, K Tsuno, M Naruse, T Tomita and T Kaneyama	217
The end of the road for silicon dioxide—and beyond: characterizing gate dielectrics for atomic-scale transistors	
D A Muller, J Rosamelia, T Sorsch, K Evans-Lutterodt, G Timp and J Neaton	219