- wore : S a - — e e

! ems Biology

 Simulation of Dynamic

eS

Bernhard Q. Palsson



Systems Biology

SIMULATION OF
DYNAMIC NETWORK STATES

Bernhard ©@. Palsson

University of California, San Diego

53 CAMBRIDGE

¢y UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
[nformation on this title: www.cambridge.org/9781107001596

© B. . Palsson 2011

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-00159-6 Hardback

Additional resources for this publication at http://systemsbiology.ucsd.edu

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.




SYSTEMS BIOLOGY: SIMULATION OF
DYNAMIC NETWORK STATES

Biophysical models have been used in biology for decades, but they have
been limited in scope and size. In this book, Bernhard @. Palsson shows how
network reconstructions that are based on genomic and bibliomic data, and
take the form of established stoichiometric matrices, can be converted into
dynamic models using metabolomic and fluxomic data. The Mass Action Sto-
ichiometric Simulation (MASS) procedure can be used for any cellular process
for which data is available and allows a scalable step-by-step approach to the
practical construction of network models. Specifically, it can treat integrated
processes that need explicit accounting of small molecules and proteins,
which allows simulation at the molecular level. The material has been class-

tested by the author at both the undergraduate and graduate level.

All computations in the text are available online in MATLAB® and
MATHEMATICA® workbooks, allowing hands-on practice with the material.

Bernhard @. Palsson is The Galletti Professor of Bioengineering and Adjunct
Professor of Medicine at the University of California, San Diego.
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Preface

(Molecular) Systems biology has developed over roughly the past 10
years. Its emergence has led to the development of broad genome-wide
or network-wide viewpoints of organism functions that have developed
against the context of whole genome sequences. Bottom-up approaches to
network reconstruction have resulted in organism-specific networks that
have a direct genetic and genomic basis. Such networks are now available
for a growing number of organisms.

Genome-scale networks have been used to develop constraint-based
reconstruction and analysis (COBRA) procedures that treat structural
properties of networks, their physiological capabilities, optimal functional
states of organisms, and studies of adaptive and long-term evolution. These
topics are treated in the companion book that emphasizes that while biol-
ogy is dynamic, it still functions under the constraints of the topological
structure of the molecular networks that underlie its functions.

Events over the time scales associated with distal causation in biology,
i.e., over multiple generations, can be studied within the COBRA frame-
work. However, analysis of proximal or immediate dynamic responses ot
organisms is limited. The recent development of high-throughput tech-
nologies and the availability of omics data sets has opened up an alterna-
tive approach to building large-scale models that can compute the dynamic
states of biological networks. Omics-based abundance measurements (i.e.,
for proteins, transcripts, and metabolites) can now be mapped onto net-
work reconstructions. In addition, functional states can be determined
from fluxomic, exo-metabolomic, and various physiological data types.

The combination of omics data sets and network reconstructions allows
the generation of Mass Action Stoichiometric Simulation (MASS) models.
Such models can, at this point in time, be formulated for metabolism and
associated enzymes and other protein molecules. MASS models will be
condition specific, as they use particular data sets. In principle, MASS

XI



Xii

Preface

models can be formulated for any cellular phenomena for which recon-
structions and omics data sets are available. Although the procedure is
now established, some of the practical issues associated with its broad
implementation will need additional experience that will call on further
research in this field.

This book is focused on the process and the issues associated with the
generation of MASS models. Their foundational concepts are described
and they are applied to specific cases. Once the reader has mastered these
concepts and gone through the details of their application to familiar
cellular processes, you should be able to build MASS models for cellular
phenomena of interest.

One should be aware of the fact that dynamic models have been con-
structed to describe biological phenomena for many decades. At the bio-
chemical level, such models have been largely based on biophysical prin-
ciples, heavily focused in particular on the use of in-vitro-derived rate
laws. Given the scarcity of such rate laws, this approach to building kinetic
models has limited the scope and size of dynamic models built in this
fashion. The omics data-driven MASS procedure provides an alternative
condition-dependent approach that is scalable.

This book, in a sense, brings my career full circle. My first love in gradu-
ate school was building complex dynamic models in biology based on the
contents ot the graduate curriculum in chemical engineering. However, as
stated above, the application of these methods to biology was necessarily
limited due to data availability and due to the “absolute” characteristics
of biophysical models. The path through stoichiometric models from the
biochemical to the genome scale based on full genome sequences, to large-
scale dynamic models based on omics data sets has been an interesting
one. Given the impending onslaught of genetic data and associated poten-
tial for biological variation, this field might be just in its infancy.

This text is constructed to teach how to build complex dynamic models
of biochemical networks and how to simulate their responses. The material
has been taught both at the undergraduate and graduate level at UC San
Diego since 2008. Teaching the material at these two levels has led to the
development of a set of homework problems (Appendix B) and a collection
of Mathematica workbooks. It is my intent to make these available through
an on-line source, initially on http://systemsbiology.ucsd.edu. I hope both
will be helptul to instructors.

The path to this book has had many influences. Reich and Selkov’s 1982
book, Energy Metabolism of the Cell, certainly contains many foundational
and influential concepts. The Color Atlas of Biochemistry by Koolman and
Roehm provides succinct representation of biochemical knowledge that
has been useful in developing the material. All the computations in the
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text were done in Mathematica. Throughout my entire career, KTEX has
been an essential resource, as it was for writing this book.

There are special thanks due to two individuals. Neema Jamshidi has
been an MD/PhD student in my lab over the past 6 or 7 years. He has been
a fantastic colleague and friend. He educated me about the use of Mathe-
matica and tirelessly answered my repeated and often naive questions. He
has also been a source of great intellectual stimulation and discussions.
He was a major influence in completing this book. As with the companion
book, Marc Abrams made the writing, preparation, editing, and production
of this book possible. He supervised, coordinated, and implemented the
construction of the KTEX document and the preparation of many figures
in the text. Special thanks to these two gentlemen.

In addition, three PhD students in my lab were of invaluable help in
getting this book to the state of completion that it has reached. Aarash
Bordbar helped me with the formulation of the complicated Mathematica
workbooks for Part IV of the text. In addition, he has played a notable role
in developing the work flow for MASS models. Daniel Zielinski not only
helped build the Mathematica workbooks for Part III, but proofread the
text with his impeccable eye for detail and logical flow of material. Addiel
U. de Alba Solis helped with the Mathematica workbooks for Parts I and II
of the text. All three were very helpful in reviewing, correcting, and pro-
viding solutions to the homework sets given in Appendix B.

Others have helped with this text either indirectly or directly through
thoughtful comments or the preparation of illustrations. For their assis-
tance, I am grateful: Kenyon Applebee, Tom Conrad, Markus Herrgard,
Joshua Lerman, Vasiliy Portnoy, Jan Schellenberger, Paolo Vicini and
Michael Zager.

This book is dedicated to my parents, who enabled, allowed, supported,
and encouraged me to pursue my studies and interests In integrated bio-
logical processes. Without them I would not have reached this level of
professional development and would not have written this book. Keerar

bakkir.

Bernhard Palsson

La Jolla, CA
April 2010
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CHAPTER 1

Introduction

Systems biology has been brought to the forefront of life-science-
based research and development. The need for systems analysis is made
apparent by the inability of focused studies to explain whole network,
cell, or organism behavior, and the availability of component data is what
is fueling and enabling the effort. This massive amount of experimen-
tal information is a reflection of the complex molecular networks that
underlie cellular functions. Reconstructed networks represent a common
denominator in systems biology. They are used for data interpretation,
comparing organism capabilities, and as the basis for computing their
functional states. The companion book [89] details the topological features
and assessment of functional states of biochemical reaction networks and
how these features are represented by the stoichiometric matrix. In this
book, we turn our attention to the kinetic properties of the reactions that
make up a network. We will focus on the formulation of dynamic simu-
lators and how they are used to generate and study the dynamic states of
biological networks.

ERB Biological networks

Cells are made up of many chemical constituents that interact to form net-
works. Networks are fundamentally comprised of nodes (the compounds)
and the /links (chemical transformations) between them. The networks take
on functional states that we wish to compute, and it is these physiological
states that we observe. This text is focused on dynamic states of networks.

There are many different kinds of biological network of interest, and
they can be defined in different ways. One common way of defining
networks is based on a preconceived notion of what they do. Examples
include metabolic, signaling, and regulatory networks; see Figure 1.1. This
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(a) Metabolic (b) Signaling (¢) Regulatory

Figure 1.1 Three examples of networks that are defined by major function. (a) Metabolism.
(b) Signaling. From Arisi et al. BMC Neuroscience 2006 7(Suppl 1):56 DOI: 10.1186/1471-2202-
7-51-S6. (c) Transcriptional regulatory networks. Image courtesy of Christopher Workman,
Center for Biological Sequence Analysis, Technical University of Denmark.

approach is driven by a large body of literature that has grown around a
particular cellular function.

Metabolic networks Metabolism is ubiquitous in living cells and is
involved in essentially all cellular functions. It has a long history —
glycolysis was the first pathway elucidated in the 1930s — and is thus
well known in biochemical terms. Many of the enzymes and the corre-
sponding genes have been discovered and characterized. Consequently,
the development of dynamic models for metabolism is the most advanced
at the present time.

A few large-scale kinetic models of metabolic pathways and net-
works now exist. Genome-scale reconstructions of metabolic networks
in many organisms are now available. With the current developments
in metabolomics and fluxomics, there is a growing number of large-scale
data sets becoming available. However, there are no genome-scale dynamic
models vet available for metabolism.

Signaling networks Living cells have a large number of sensing mecha-
nisms to measure and evaluate their environment. Bacteria have a surpris-
ing number of two-component sensing systems that inform the organism
about its nutritional, physical, and biological environment. Human cells
in tissues have a large number of receptor systems in their membranes to
which specific ligands bind, such as growth factors or chemokines. Such
signaling influences the cellular fate processes: differentiation, replication,
apoptosis, and migration.

The functions of many of the signaling pathways that is initiated bv
a sensing event are presently known, and this knowledge is becoming
more detailed. Only a handful of signaling networks are well known,



1.1 Biological networks

Figure 1.2 Two examples of networks that are defined by high-throughput chemical assays.
Images courtesy of Markus Herrgard.

such as the JAK-STAT signaling network in lymphocytes and the Toll-like
receptor system in macrophages. A growing number of dynamic models
for individual signaling pathways are becoming available.

Regulatory networks There is a complex network of interactions that
determine the DNA binding state of most proteins, which in turn deter-
mine whether genes are being expressed. The RNA polymerase must bind
to DNA, as do transcription factors and various other proteins. The details
of these chemical interactions are being worked out, but in the absence
of such information, most of the network models that have been built are
discrete, stochastic, and logistical in nature.

With the rapid development of experimental methods that measure
expression states, the binding sites, and their occupancy, we may soon see
large-scale reconstructions of transcriptional regulatory networks. Once
these are available, we can begin to plan the process to build models that
will describe their dvnamic states.

Unbiased network definitions An alternative way to define networks
is based on chemical assays. Measuring all protein—protein interactions
regardless of function provides one such example; see Figure 1.2. Another
example is a genome-wide measurement of the binding sites of a DNA-
binding protein. This approach is driven by data-generating capabilities.
It does not have an a priori bias about the function of molecules being
examined.



Introduction

Table 1.1 Web resources that contain information about biological networks (prepared by
Jan Schellenberger)

 Protein— Regulatory/ |
Metabolic protein signaling  Organisms Curation’

KEGG http://www.genome.jp/kegg/

X many C ‘
BiGG http://bigg.ucsd.edu/ X many M
BioCyc? http://biocyc.org/ X X many C/M
MetaCyc http://metacyc.org/ X many C/M
Reactome http://reactome.org/ X X X many M
BIND http://www.bindingdb.org/ X many E/M
DIP http://dip.doe-mbi.ucla.edu/ X many M |
HPRD http://www.hprd.org/ X human M
MINT http://mint.bio.uniromaZ2.it/ X many M
Biogrid http://www.thebiogrid.org/ X many E
UniHI http://theoderich.fb3. X human E/M
mdc-berlin.de:8080/unihi/
Yeastract http://www.yeastract.com/ X yeast M
TRANSFAC  http://www.gene-regulation.com X many M
TRANSPATH http://www.gene-regulation.com X many M
RegulonDB  http://regulondb.ccg.unam.mx/ X many C/E
NetPath http://www.netpath.org/ X human M

9 M = manual/literature, C = computational, E = experimental.
b Links to other *Cyc databases.

Network reconstruction Metabolic networks are currently the best-
characterized biological networks for which the most detailed reconstruc-
tions are available. The conceptual basis for their reconstruction has been
reviewed [100], the workflows used detailed [35], and a detailed standard
operating procedure (SOP) is available [117]. Some of the fundamental
issues associated with the generation of dynamic models describing their
functions have been articulated [52].

There is much interest in reconstructing signaling and regulatory net-
works in a similar way. The prospects for reconstruction of large-scale
signaling networks have been discussed [49]. Given the development of
new omics data types and other information, it seems likely that we will
be able to obtain reliable reconstructions of these networks in the not too
distant future.

Public information about pathways and networks There is a grow-
ing number of networks that underlie cellular functions that are being
unraveled and reconstructed. Many publicly available sources contain
this information; see Table 1.1. We wish to study the dynamic states of
such networks. To do so, we need to describe them in chemical detail and
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incorporate thermodynamic information and formulate a mathematical
model.

EFI Why build and study models?

Mathematical modeling is practiced in various branches of science and

engineering. The construction of models is a laborious and detailed task.

It also involves the use of numerical and mathematical analysis, both of

which are intellectually intensive and unforgiving undertakings. So why
bother?

Bailey'’s five reasons The purpose and utility of model building has been
succinctly summarized and discussed [15]:

L

“To organize disparate information into a coherent whole.” The
information that goes into building models is often found in many
different sources and the model builder has to look for these, evalu-
ate them, and put them in context. In our case, this comes down to

building data matrices (see Table 1.3) and determining conditions of
interest.

. “To think (and calculate) logically about what components and inter-

actions are important in a complex system.” Once the information
has been gathered it can be mathematically represented in a self-
consistent format. Once equations have been formulated using the
information gathered and according to the laws of nature, the infor-
mation can be mathematically interrogated. The interactions among
the different components are evaluated and the behavior of the model
is compared with experimental data.

. “To discover new strategies.” Once a model has been assembled and

studied, it often reveals relationships among its different components
that were not previously known. Such observations often lead to
new experiments, or form the basis for new designs. Further, when a
model fails to reproduce the functions of the process being described,
it means there is either something critical missing in the model or
the data that led to its formulation is inconsistent. Such an occur-
rence then leads to a re-examination of the information that led to
the model formulation. If no logical flaw is found, the analysis of
the discrepancy may lead to new experiments to try to discover the
missing information.

“To make important corrections to the conventional wisdom.” The
properties of a model may differ from the governing thinking about
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process phenomena that is inferred based on qualitative reason-
ing. Good models may thus lead to important new conceptual
developments.

5. “To understand the essential qualitative features.” Since a model
accounts for all interactions described among its parts, it often leads
to a better understanding of the whole. In the present case, such qual-
itative features relate to multi-scale analysis in time and an under-
standing of how multiple chemical events culminate in coherent
physiological features.

EER Characterizing dynamic states

The dynamic analysis of complex reaction networks involves the trac-
ing of time-dependent changes of concentrations and reaction fluxes over
time. The concentrations typically considered are those of metabolites,
proteins, or other cellular constituents. There are three key characteristics
of dynamic states that we mention here right at the outset, and they are
described in more detail in Section 2.1.

Time constants Dynamic states are characterized by change in time; thus,
the rate of change becomes the key consideration. The rate of change of
a variable is characterized by a time constant. Typically, there is a broad
spectrum of time constants found in biochemical reaction networks. This
leads to time-scale separation, where events may be happening on the
order of milliseconds all the way to hours, if not days. The determination
of the spectrum of time constants is thus central to the analysis of network
dynamics.

Aggregate variables An associated issue is the identification of the bio-
chemical, and ultimately physiological, events that are unfolding on every
time scale. Once identified, one begins to form aggregate concentration
variables, or pooled variables. These variables will be combinations of
the original concentration variables. For example, two concentration vari-
ables may interconvert rapidly, on the order of milliseconds and thus on
every time scale longer than milliseconds these two concentrations will be
“connected.” They can, therefore, be “pooled” together to form an aggre-
gate variable. An example is given in Figure 1.3.

The determination of such aggregate variables becomes an intricate
mathematical problem. Once solved, it allows us to determine the dynamic
structure of a network. In other words, we move hierarchically away from
the original concentration variables to increasingly interlinked aggregate



