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Preface

This volume is an expanded version of Chapters 111, IV, V and VII of
my 1963 book “Linear partial differential operators™. In addition there
1s an entirely new chapter on convolution equations, one on scattering
theory, and one on methods from the theory of analytic functions of
several complex variables. The latter is somewhat limited in scope
though since it seems superfluous to duplicate the monographs by Eh-
renpreis and by Palamodov on this subject.

The reader is assumed to be familiar with distribution theory as
presented in Volume I. Most topics discussed here have in fact been
encountered in Volume I in special cases, which should provide the
necessary motivation and background for a more systematic and pre-
cise exposition. The main technical tool in this volume is the Fourier-
Laplace transformation. More powerful methods for the study of
operators with variable coefficients will be developed in Volume IIL
However, the constant coefficient theory has given the guidelines for
all that work. Although the field is no longer very active - perhaps
because of its advanced state of development - and although it is pos-
sible to pass directly from Volume I to Volume III, the material pre-
sented here should not be neglected by the serious student who wants
to gain a balanced perspective of the theory of linear partial differen-
tial equations.

I would like to thank all who have helped me in various ways dur-
ing the preparation of this volume. As in the case of the first Volume
I am particularly indebted to Niels Jorgen Kokholm of the University
of Copenhagen who has read all the proofs and in doing so suggested
many improvements of the text.

Lund in February 1983 Lars Hormander
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Introduction

Differential operators with constant coefficients acting on distri-
butions of compact support are diagonalized by the Fourier-Laplace
transformation. Already in Chapter VII we showed how this obser-
vation leads to general results on existence of fundamental solutions
and approximation of solutions. In Chapter X we first examine the
regularity properties of the fundamental solutions more closely, in-
cluding the location of the wave front set. Existence and approxima-
tion of solutions is then studied systematically. Hypoelliptic operators
are characterized in Chapter XI; the typical examples of elliptic oper-
ators or the heat operator were discussed in Volume I. We also prove
a general result on propagation of regularity of solutions which is
similar to Holmgren's uniqueness theorem. In Volumel we gave ex-
plicit formulas for the solution of the Cauchy problem for the wave
equation. The hyperbolic operators which have similar properties are
investigated in Chapter XII which also includes a study of the charac-
teristic Cauchy problem modelled on say the heat or Schrddinger
equation. The precision of the results in these chupters pays off in
Chapter XIII where it allows us to treat a fairly large class of oper-
ators with variable coefficients locally as perturbations of constant
coefficient operators. The new features which appear even for such
operators are emphasized by a discussion of non-uniqueness for the
Cauchy problem. Chapter XIV is devoted to perturbation theory
in R™ (short range scattering theory).

The study of general overdetermined systems of differential oper-
ators with constant coefficients requires more prerequisites from the
theory of analytic functions of several complex variables than we wish
to assume here. As mentioned in the preface several monographs have
already been devoted to this topic. In Chapter XV we shall therefore
only develop some of the basic analytic techniques in a way which
simplifies the existing treatments. Their use is illustrated in the case of
a single differential equation. As in the preceding chapters it would
cause no additional difficulties to consider determined systems.
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Chapter XVI is devoted to convolution equations. The translation
invariance which they share with differential operators with constant
coefficients makes their study so closely related that this enlargement
of our main theme seems natural if not unavoidable.



Chapter X. Existence and Approximation
of Solutions of Differential Equations

Summary

In the preceding chapters we have constructed a number of explicit
fundamental solutions. In Chapter VII we also gave a construction
which is applicable to any differential operator with constant coef-
ficients. We return to it in Section 10.2 to discuss the regularity
properties of the fundamental solutions obtained in greater detail
First we determine when a fundamental solution is in ome of the
spaces introduced in Section 10.1. These generalize the H, spaces of
Section 7.9 and are defined essentially as inverse Fourier transforms of
I? spaces with respect to appropriate densities. In Section 10.2 we also
examine how the fundamental solution E(P) of P(D) given by the
construction depends on P, and we estimate WF(E(P)) for a fixed P.
A differential equation P(D)u=f with fe& can immediately be
solved if one has a fundamental solution of P(D) available. In Section
10.3 we determine the properties of the solution rather precisely by
means of the results on fundamental solutions proved in Section 10.2,
This leads to a comparison of the relative strengths of differential
operators (polynomials); P is said to be stronger than Q if Q(D)u is at
least as regular as P(D)u when ueé&’. This notion, in a more precise
form, is studied at some length in Section 10.4. In Section 10.5 we give
a brief discussion of approximation theorems of Runge’s type for
solutions of the homogeneous differential equation P(D)u=0. This
prepares for the study in Section 10.6 of the differential equation
P(Dyu=f when f is a distribution of finite order. The same problem
1s discussed in Section 10.7 when f is an arbitrary distribution. Fi-
nally, Section 10.8 is devoted to the search for a geometrical form of
the conditions for solvability encountered in Sections 10.6 and 10.7.

10.1. The Spaces B,

In an existence theory for partial differential equations it is important
to give precise statements concerning the regularity of the solutions
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obtained. Now a condition on the regularity of a distribution or
function u (with compact support) can also be regarded as a condition
on the behavior of the Fourier transform 4 at infinity. To classify this
behavior one may for example ask for which weight functions k it is
true that k#iel’. The set of all such temperate distributions u is
denoted by B, here. Only the cases p=2, p=oc and p=1 are really
interesting. Concerning k we shall make a hypothesis which ensures
that B, , is a module over Cg':

Definition 10.1.1. A positive function k defined in R* will be called a
temperate weight function if there exist positive constants C and N
such that

(10.L.1) KE+mS(1+ CIENYk(n); & neR™
The set of all such functions k will be denoted by A#.

Remark. In harmonic analysis a weight function usually means a
function K such that
K(E+m=K(E) K.

To avoid confusion we shall call such functions submultiplicative here.
From (10.1.1) it follows that
(10.L1Y  (1+CIRDNZKE +nyk) S+ CIEDY; & neR™

In fact, the left-hand inequality is obtained if 4 is replaced by ¢+7
and ¢ is replaced by —¢ in (10.1.1). If we let £—0 in (10.1.1) it follows
that k is continuous, and when =0 we obtain the useful estimates

(10.1.2) k()(1+ CIE) =N Sk(E) S k(0)(1+ CI2])".
If ket we shall write
(10.1.3) M (&)=sup k(S +n)/k(n).

This means that M, is the smallest function such that
(10.1.4) k(E+nm= M () k(n).

It is clear that M, is submultiplicative,

(10.1.5) M (E+mSM (O M, (1),

and since M ($)<(1+ CIZ)" this implies that M, €. From (10.1.5) we
can deduce that

(10.1.6) 1=M,(00EM,(S), <CeR"
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In fact, for every positive integer v we have
1=M(0)= M ()" M, (=vO)SME)"(1+ Cvig],

and if we take v*® roots in this inequality and let v— oc, the estimate
(10.1.6) follows.

Example 10.1.2. The spaces H , in Section 7.9 correspond to
k() =(1+1E1?p2.
That k.e>t” and that M, (n)<(1 +|4))'s! follows from the estimates

L+IE 472 ST+ + 210l + I S (@ + 1231 + ).

Example 10.1.3. The basic example of a function in X, which is the
reason why we introduce it here, is the function P defined by
(10.1.7) PE)P= Y IPYQE)?

e/ 20
where P is a polynomial so that the sum is finite. Here P® =3P It
follows immediately from Taylor's formula that

(10.1.8) PE+n<(1+CR)"P(n),

where m is the degree of P and C a constant depending only on m
and the dimension n. From this example other functions in X are
obtained in the theory as a result of the operations described in the
next theorem.

Theorem 10.1.4. If k, and k, belong to X, it follows that k, +k,, k,k,,
sup(k,, k;) and inf(k,, k,) are also in X". If keX we have ke X for
every real s, and if p is a positive measure we have either uxk=c0 or
else uxkeX.

Proof. 1t follows from (10.1.1) that 1/kext if ke 4. The statements are
thus all trivial except perhaps the last. To prove that one, we note
that (10.1.1) gives

(ux k) E+ ) S(1+ CED (uxk)(n).

If p*k is finite for some 7 it follows that u*k is finite everywhere and
belongs to .X.

Occasionally it is useful to know that functions in X can be
replaced by equivalent functions which vary very slowly indeed:

Theorem 10.1.5. If ke X" we can for every >0 find a function ket
and a constant C; such that



6 X. Existence and Approximation of Solutions of Differential Equations

(10.1.9) 1ShOKEEC,,  EeR”,
(10.1.10) M (O=(1+CKDY, CeR:,
where C and N are independent of 3, and
(10.1.11) M, — 1 uniformly on compact subsers of R" when 6—0.
Proof. We shall set
ky($)=sup e Mk —n).
n
{Note the analogy with the definition of a convolution.) Then we have
in view of (10.1.1)
k(&) £ks(&) S sup (1 + Clnl)* k(&) = C5k(&)
n
where the last equality is a definition of C,. This proves (10.1.9). To
prove (10.1.10) we note that
k,,(cj-'ra):sup e= Mkl +¢ —n)
<supe""’” 1+ CIENNK(E—n)
—-(1 +CIED ks (E); &, EeR™

To prove (10.1.11) we first rewrite the definition of k; by introducing
&~y as a variable instead of 5. This gives

ks(&)=sup e~ =" k().
n

Hence
ky(¢+&)=sup e~ ?1¥+<~nk(y)
n

<eblél sup e~%18=mk(n) =e5'§"k6(;’),
n

which proves that
1M, (&g
The proof is complete.

Remark. 1t might have been more natural to require in Definition
10.1.1 only that k is continuous and that

k(Z+m) < CL+IE) k(n).

We have not done so since this would not guarantee the continuity of
M,. Now the proof of Theorem 10.1.5 shows that for such functions
we still obtain (10.1.9) and k;e . Our choice of definition has there-
fore not led to any significant loss of generality.

We can now give the formal definition of the spaces we need:
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Definition 10.1.6. If keX” and 1 Sp<cc, we denote by B, , the set of
all distributions ue%’ such that 4 is a function and

(10.1.12) full,  =(@m) ™" fIk(&) a(E)PdE) P < cc.

When p=cc we shall interpret |lu]|, , as ess. sup|k(Z) @)l

The factor (2n)~" is included for convenience in the results and is
motivated by the fact that the measure (27)7"dZ occurs in Parseval’s
formula. For example, we have thanks to this normalization

llull2. YIIP‘“’ Jullz:).

Theorem 10.1.7. B, , is a Banach space with the norm (10.1.12). We have
S <B, =,
also in the topological sense.' CF is dense in B, , if p<<.

Proof. Let L, , be the Banach space of all measurable functions v such
that the norm (27)""?||kv|| ,<oc. Then we have

<L, =,

also in the topological sense, and & 1s dense in L, , if p<oc. In fact,
that ¥ <L, , follows from the second inequality in (10.1.2), and if
p<cc it follows from Theorem 1.3.2 that even C¥' is dense in L, ,, for
C? is dense there. To prove that L,,=%" we note that Holder's
inequality gives

fldvidé <likol,lig/kll,

where 1/p+1/p'=1. This proves our assertion since |[¢/k|, is a con-
tinuous semi-norm in & in view of the first inequality in (10.1.2). If we
now use the fact that the Fourier transformation is an automorphism
of & and of &, it follows that BP ¢ is complete, that ¥ <B, , <"
(topologlcally) and that & is dense in B, if p<ococ. Since C7 is dense
in & by Lemma 7.1.8, this completes the proof.

Theorem 10.1.8. If k,, k,eX" and
(10.1.13) k(DS Cky(E), EeRA,

it follows that B,, =B, ,.. Conversely, if there exists an open set
X #0 such that B, , n&'(X)cB then (10.1.13) is valid.

p.k2?

Proof. The first part of the theorem is trivial. To prove the second we
let F be a compact subset of X with non-empty interior, and set

! This means that the topology in & is stronger than that induced there by B, , and
that the topology in B, is stronger than the one induced by &
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B=B,, n&'(F). Since the topology in each of the spaces B, Is
stronger than that in &’ (Theorem 10.1.7), it is clear that B is a closed
subspace of B, and that the inclusion mapping of B into B,,, is
closed. Hence i1t follows from the closed graph theorem that

(10.1.14) Nl e S C o liul

= - ueB,

where C, is a constant. With a fixed function ueCF(F) such that
u%0, we shall apply (10.1.14) to u,(x)=u(x)e'**" where neR". Since
,(5)=14( —n), the estimates

ke (§) a(z —m) Sk (MIM,, (S —m A —n)l,
Ik, (&) 4(E — M Z ko (Ml —n)/M,(n =)
give
(10.1.15) It Sy (),
i u,,”p,k:gkz(’]) ]iu”p, VM,

If we combine these inequalities with (10.1.14) we obtain (10.1.13) with
the constant C=C, uf,, Mh/“u)Ip. Uit The proof is complete.

Corollary 10.1.9. If k,, k,eX; it follows that
B

p.ky me‘k:‘:'BP'kx*kz

and that

max full, , Sl g, vn, STl p, Fliullpe,  ¥€By 0B,

j=1.2

Proof. Since k;<k, +k, we have

B B, and fluf,, Slul, i,

poky+k2

for j=1,2. On the other hand, if ueB,; NB,,,, it follows from
Minkowski's inequality that ueB,,, ,,, and that the second part of
the inequality is valid. This proves the corollary.

We next examine when the inclusion mapping in Theorem 10.1.8
Is compact.

Theorem 10.1.10. If K is a compact set in R", the inclusion mapping of
B, N&'(K) into B, ,, is compact if

p.k p.k2

(10.1.16) ky(&)/ky(8)—0, -,

Concersely, if the mapping is compact for one set K with interior
points, it follows thar (10.1.16) is valid.
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Proof. a) Assuming that (10.1.16) is valid, we take a sequence
u,eB, , N€(K) such that fju,],,, 1. We have to prove that there
exists a subsequence converging in B,,.. Let ¢ be a function in

C% (R") which equals 1 in a neighborhood of K. Since u,=¢u,, we have
(10.1.17) 4,(0)=2n) ™" [ (& —n)a,(n) d.
Multiplying {10.1.17) by k() and using the inequality
ki (Q)sM, (E—n)k(n)
and Holder's inequality, we obtain
Ik, ()4, S 2r) "M, @l Ik 4,
S@m)"P M, 6,

Similarly, application of the same argument after differentiation of
(10.1.17) gives

k(&) D*a () £2m) =" |M,, D* ]l

This proves that the sequence #, is uniformly bounded and equicon-
tinuous on every compact set. Thus we can find a subsequence con-
verging uniformly on all compact sets; changing notations, if neces-
sary, we may assume that the sequence 4, itself is uniformly con-
vergent on compact sets, Given any ¢>0 we now choose a ball S so
large that k,(E)/k,()<e when £¢S. Using Minkowski’s inequality we
obtain

=, |l ps, S€ Uy =ty |0, + (1) 7" g |k, (2, —1,)|”d)',

with the usual interpretation when p=o0. The second term on the
right-hand side tends to O when u and v— oo, and the first is always
<2¢ Hence the sequence u, is a Cauchy sequence in B which
proves the compactness.

b) Assuming the compactness of the inclusion mapping for some
compact set K with interior points, we shall prove (10.1.16). To do so
it is sufficient to prove that if a sequence ¢, — oo then k,(S,)/k,(S,)—0.
Let CT(K)su=0, and set

u,(x)=u(x) &= /k (E).
From (10.1.15) we then obtain
(10.1.18) Nl p i, S Ml 5 agy >
|luv1[p_k2% ”u”p‘1_/:&1,‘2’(2(5\,)./1‘1@\,)-

From the first of these inequalities it follows that the sequence u, is
bounded in B, , . hence precompact in B, ,,. Now u,—0 in & for if

p.k2?



