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Preface

Function space is a field of mathematics that studies some set of functions of some specific kind from one set X
to another set Y, it defines the function, and the space stands for applications in which it can be both vector space
or topological space or one of them at times. Functional space can be seen in many topics of mathematics, they
play a vital role in problem solving in the topics like; set theory, linear algebra, linear transformation, functional
analysis, topology, Homotopy theory, algebraic topology, stochastic processes’ theory, map evaluation, calculus, etc.

Function spaces are very common theoretical concepts in the topics such as metric and normed spaces, Cauchy
and convergent sequences, uniform limits of continuous functions, contraction mapping theorem, implicit function
theorem, cauchy-schwarz inequality and parallelogram law, Bessel’s inequality, fourier analysis. These are some of
the very important topics that include function spaces in the foundation of applications. This book contains some
practical as well as conceptual concepts of function spaces and the application description is also theorized in the
contents.

I especially wish to acknowledge the contributing authors, without whom a work of this magnitude would clearly
not be realizable. I thank them for allocating much of their very scarce time to this project. Not only do I appreciate
their participation but also their adherence as a group to the time parameters set for this publication. I also wish
to thank my publisher who considered me worthy of this incredible opportunity and supported me at every step.

Editor
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We find necessary and sufficient conditions on weighted sequences w;, i = 1,2,. ..
Z::j;l Wik, ZI;ZT fpi=1,isbounded froml,, tol,, for1 <gq < p < oo.

Tk Wy,

1. Introduction

Let1 < p,g<ocoand1/p+1/p' = 1. Letv = ity
be positive, w; = {wylie, i = 1,2,...,n— 1L and u =
778 b nonnegatlve number sequences, herelnafter referred
to as weights.

Let 1, be the space of sequences f = {fi}2,, for which
the followmg norm is finite:

©0 1/p
11, = (zlv,-f,-lp) | W
i=1

Consider the operator §,_; that acts on the sequence f =
{fiee, as follows:

nZ

Zwlk Zkaz Z wr—lk,,lz.f)’

=1 1\2”1 n l_l (2)

(Sn lf

i>1,

and call it n-multiple discrete Hardy operator with weights.
By changing the order of summation in (2) we have

(Su-1.f); ZAn—ll Lj) fp izl (3)

,n—1,u,and v, for which the operator (§,_, f); =

where A, _; (i, j) = 1forn=1and

i
Z wl’kl’

nll Z] Zwmlk,,l Z wnzk,,z
ky1=j ky 2=k, ki=k,
i>j>1,
(4)
forn > 1.

Together with operator (3) we consider its dual operator
n~1f zAn—ll hj)fo 21 (5)

When n = 1, the operators S,_; and S;_; are simple
discrete Hardy operators (S, f); = Z}:l fjand (S5 f); =
Z‘;:i fjs the problem of boundedness from I,, to I, is
investigated in detail in [1-3] for all values of the parameters
pandgq.

In paper [4] necessary and sufficient conditions of bound-
edness of operators (3) and (5) from l , to l .. are obtained
for the case 1 < p < g < oo. However, the problem of
boundedness of these operators has not been studied for the
case 1 < g < p < oo. In this paper we consider this problem.

Let us notice that the boundedness problem of contin-
uous Hardy-type operators has been studied and developed



in an extraordinary depth (see, e.g., [3]). The corresponding
results for n-multiple integral Hardy operators were con-
sidered by Baiarystanov in [5]. Namely, he investigated the
continuous analogue of operators (3) and (5) and found
necessary and sufficient conditions of their boundedness
from L to L, for the case 1 < p < q < ©0. Moreover,
there he obtained sufficient conditions of the same problem
for the case 1 < g < p < o0. Later in [6] Sagindykov proved
that sufficient conditions found by Baiarystanov for the case
1 < g < p < oo are also necessary. However, the method for
the continuous case does not work in the discrete situation as
it was mentioned in [4]. Thus, here we present a completely
different method.

In the sequel we suppose that the sum Zf:t is equal to
zero for t > k; the symbol F <« E means F < cE, where
a positive constant ¢ does not depend on arguments of the
expressions F and E but can depend on the parameters p and
q. The relationship F = E means F « E « F.

2. Auxiliary Statements

Foralli > j > 1 we assume that A, (i,j) = 1ifl < m

and Ay, (i, /) = Ypoj@ix Xk ok Oty Zk ki, @
ifn—1212>m > 1. Moreover, forall i < j we suppose that
Ay j) = 0ifLm > 1.

In paper [4] the following lemma is proved.

Lemma 1 (see [4]). Foralli,j,7:1< j<71<ionehas

max Arm(l T)Alrﬂ (T j) < Alm(Z ])

m—1<r<

1
< Z Ar.m (l’ T) Al.r+l (T’j) ’
r=m-1
(6)

whenn—-1>1>m> 1.

Lemma 2. Let (B, J), -1 be a nonnegative matrix whose
elements do not decrease in the first index and do not increase
in the second index. Let y > 0. Then for 1 < t, k < 0o one has

Y y-1
A;( B,,) z( B,,) Afj( B,.,}), (7)
J J ]
i i L i
A;(}:B,j> (Z ) A;(ZB,-,_,-), (8)
J=t j:t j=l

Ei,j+1 a}’ld A:E,,j = Ei,j = Ei—l,j'

MZ‘
'l'l'M?.—
'IT:M»

+ —_—
Where AIE'J = El',j =
Generally speaking the statement of Lemma 2 is known,
but for more complete presentation let us give its proof. We
prove only relation (7). Relation (8) can be proved similarly.
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Proof. Lety > 1. Then

)

k " ok
2 (ZBLJ‘) - (ZBU) > Bijn
i=j i i=j+1

k -l k
(ZBU) A’ (ZB,., j) :
i=j i=j

If 0 < y < 1, then these inequalities hold in opposite
direction. Therefore (7) holds for all y > 0. The proof of
Lemma 2 is complete. O

1]

Moreover, we need the following obvious relations:

($2.) - 35

() -$(8n)

We also use the following lemma.

Lemma 3 (see [1]). Let 1 < p < g < co. Then the operator S;
is bounded from 1, , tol,, if and only if

B, (1)
; pI(p—q) plg-1)/(p-q) (p-9/pq
L2 s p 0 PI P/
— 1 = -
i=1 \ j=1 k=i
< 003
(11)
moreover, By(1) = || S; |l.

3. Main and Associated Results

Forr=0,1,...

T q4/(p=q)
Am=| Y| DAl (i)ul
i=1 \_j=i

,n — 1, we assume that
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i, N\ 4D/ (p-q)
X (ZAI:T—I,Y-O-I (i’ k) VI:P )

k=1

(p-a)pq

o/ ' plg-1)/(p-q)
B, (n) = Z(ZAIQI (i) v;? )
=1\ j=i

; pl(p-a)
® ( ZAZ—I,HI (i, k) uZ)
k=1

(p-a)/pq
( ZA r 1 J, l ) ) .

Theorem 4. Let 1 < g < p < ocoandn > 1. Then
operator (3) is bounded from 1, , to I, if and only if A(n) =
max,.,., A, (n) < co. Moreover, for the norm of operator (3)
froml,, tol,, the following relation || S,,_, || = A(n) holds.

(12)

Theorem 5. Let 1 < q < p < ooandn > 1. Then
operator (5) is bounded from L, to 1, , if and only if B(n) =
max,.,.,_;B,(n) < co. Moreover, for the norm of operator (5)
from lp’v to lq‘u the following relation || S,_, || = B(n) holds.

For the proofs of Theorems 4 and 5 we need to establish
several statements.
Assume that

i
- S 6 )
j=1

(S )i = XA ) f (13)

j=1

[o.0]
(S79);= DA (i) g Hj210<r<n—1.
i=j

Consider the inequality

187 9ll4 < Cllall, (14)

Lemma6. Let 1 < p, q < 00. Then the inequality
IS/ < CUf s f20, (15)

is dual to (14) with respect to the linear form Y o, f;gii;.

Proof of Lemma 6. If C > 0 is the best constant in (14), then
on the basis of principle of duality in [, we have

C = sup ” g"qu Zk 1fk(s 9)k~q
pt lol,, o0 ys0 10y lal,, |
16
= sup Sung gi(srfaq)i _ ||S fu "p yl
920 f20 |91, M fly o If Il 2
|

Lemma7. Letl < g< p<ooand0 <r < n-1.Ifinequality
(14) holds with the least constant C > 0, then

B, (n) <C. (17)

Proof of Lemma 7. Suppose that inequality (14) holds. Then
due to Lemma 6 inequality (15) also holds with the same best
constant as in (14).
Lett > x >
{f}2 as follows: f; =

i ~q\ @ D/(p- q)
(XL &) (Zkej
j<x.

If we substitute this sequence in the right side of (15), we
have

[
x /j q/(p-q)
-($(3=)
j=1\i=1 (18)

: ap-0/p-g) M1
» NP —q
X(ZAM (k, j) v, ) uj> .
k=)

Now we will work with the left side of (15) and the test
sequence:

1. Introduce the test sequence f
0 for j > x and f;

' " (p-1)q-1)/(p—q)
f’l(k, ])vkp) for 1

IA

Is. 7.

U

©0 . i i p-1
15 (S0 (£ 0000)
i=1 Jj=1 k=1

(19)

(reduce the sum in the second brackets)

v
M8

i j p-1
Z r1 (i ) fjﬁ?(ZAr,l (i, k) fkﬁZ) (20)
=1 k=1

I
o

(change order of summation)

p-1
(i, k) fkag) w (2D

Z 020: r1’])V (2A1

i=f



(use nonincreasing of A, | (i, k) in the second argument)

-1

ﬁ 2 <2ﬁ4> @ @

(substitute the test sequence)

j (q-1/(p—q) ‘ )
(zw) (zAsz>
i

nMx

(p-1)(q-1)/(p-q)
‘P’
. )

t / _ /
X ZAI:J (i’ ]) Vi P
iz

j k (g-1)/(p—q)
~{q
x<z(zm)
k=1 \i=1

t /
x (ZA‘:’I (i, k) v;?
i=k

\ -/ p-) Pl
~q —4
I

(23)
(join together the similar cofactors)
% f (q-1)/(p-q) q(p-1)/(p—q)
S(2w) (B
j=1\i=1
ik N@Dp- P
~q ~{q
(3(Ee)w) «
=1
(24)

(use (8))

x j (g-D/(p—q) "
»Z(Za) (ZAg@
i k=j

j=1

q(p-1)/(p-q)
!
-p
) Ve )
; b\ Dy P
- -Il ~(l
X (ZA,\.(Zui ) ) U
k=1 i=1

(simplify)

(25)

q(p-1)/(p—q)
71 (k ]) Vk )
=1\ k=j

i ql(p-q)
i=

5[50

.

(26)

Advanced Concepts and Applications of Function Spaces

q(p-1D/(p—q)
Ap,
) Ve )

Therefore,

' X t
. (S 4
Py

=1
. (27)
i Y N\ VP
) @)
i=1
which, together with (15) and (18), gives
q(p-1)/(p—q)
z(zA T )
28
j q/(p—q) (p-a)/pa ( )
\"~4 ~q
X (Zui ) u; ,
i=1
forallt > x > 1.
Now in (28) we approacht — oo and use (8)
= 7 5o q(p-1)/(p-q)
' !
Z(ZAlr),l (k, j) VAP )
J=1\ k=]
(29)

(p-q)/ pq

: pl(p-)
x A (Z"’q)

(then we use the Abelian transformation)

x [/ pl(p-q) q(p=D/(p=q)
Z(Zﬁ?) (ZA (k. j)v )
j=1\i=1

x pl(p=9)

i=1

x( i Afjl (k
k=x+1

4p=-1/(p-q) \ P~/ pq
!
™)
(and use (7))

x /] Pl s Pa-1/(p=q)
(5(3) (5
j=1\i=1 k=j
o » (p=a)/pa
Aj ZA[r’,l(k’j)Vkp s
k=j

(30)

(31
Substituting % and approaching x — ©o, we obtain (17).
O

Lemma8. Let1 <g<ocoand0<r <n—1. Then
"S:f"q,ﬁ < "S;—lf"q.u’ f 2 0. (32)
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Proof of Lemma 8. The expression A, _; (i, j) can be trans-
formed as follows:

i
n 1,1 1 J) - Z wn-lk,, j i Z wr+l,k”l

n I } kr+l=kr+2

Z Z @k,
k=K1 ky=k,
(33)

i

- Z Wy Lk, " z

ky1=j "nl =k 13

wr+2,k,,1

Z wr+1k Arl lkr+l)

kr+l_kr12

(change of order of summation)

Z A r+l

ke =j

r+1,k,+,

knl kr+l

DITEVINEED)

kn—1=j

wr+2,k,+2 (34)

kra=keis

i
Z (i8) Wry1 Ay (8 ) -
Since AL A,y 11 (6 ]) = @1 1Ay pi2(ts ), then

ZArl (1 t)A An—1r+l (t J) (35)
t=j

Anl 1]

Let f > 0; then
0 [e0) (I—].
"S:—lf"?],u = Zu?(ZAn—l,l (i, ])fz)
= \is

X zAn—l,l (k. j) fi

k=

(36)
2 Zu?ZAn—l,l (k. j) fi
1 ks
0 q-1
(Z J)f:)
(use (35))
00 00 k
=YY Y Ay (o) A A,y (1)
=1 k=j t=j
(37)

0 q-1
X <2An-1,1 (i, ) fx>
i=k

(change order of summation)

00 0
=Z Z nlr+1tJ)
t=j

j=1
(38)

0 0 q-1
X ZAr,l (k. 1) fr (ZAn—l,l (i, §) fx)
k=t i=k

(use A, (i, j) 2 A, (i,t)A, 1,41 (t, j), which follows from
(6))

o0 o0 i
>Yu ZAAHmr»>LMaw
=1t
(39)

o o q-1
X ZA'J (k,t) fk(ZAr,l (i 1) fx)
k=t i=k

(use (7) and (8))

00 00 q
> ZquA Al (] Z (ZA,1 tt)f,) (40)

j=1 t=j k=t
(use the relation A} (X A, (1) f;) = A, (k. 1) fi)
0 0 o9 1
=Zﬁ§%pﬂ4ﬁxnﬁ(2Am@nﬁ) (41)
== =

(rearrange the cofactors)

o / 00 q¢
= (zAr,l (i’t)fi) ZA;A{L—I,)‘+1 (t’ J) u? = (42)
t=1\i=t j=1

1,t) =0)

0 [/ © q t
-5(San608) 41 S04

Jj=1

(take into account that A, _; ,(t -

(43)

=157 fllga

that is, we have (32). |

4. Proofs of Theorems 4 and 5
First we prove Theorem 5.

Proof of Theorem 5

Necessity. Suppose that operator (5) is bounded from [,
to I, that equivalently means the validity of the following
inequality:

1551 llgu < ClA e f 20 (44)
4 p

Then due to (32) inequality (14) holds forany r = 0,1,...,n—
1. Therefore, by Lemma 7 we have B,(n) <« C, 0 <r <n-1,
that means B(n) <« C, where C is the best constant in (44);
thatis, C = || S;_, |I.



Sufficiency. will be proved by the induction method.

For n = 1 the operator S, | = §; is the Hardy operator.
Thus by Lemma 3 if By(1) < oo, then the operator §; is
bounded from [, , to I, with the estimate || Sg Il By(1).

Next we assume that forn = 1,2,...,,1 <l <n-1,if
B(n) < oo, then the operator S;,_,,n =1,2,...,1, is bounded
froml tol . with the estimate || S;,_, || < B(n).

Now we need to prove that forn = I+ 1if Bl + 1) =
max.,B,(I+1) < 0o, then the operator §;" is bounded from
1, to Iy, with the estimate | Sl < B(l +1).

Letf>0andT {k € Z : (Sf)}]eN
Suppose that k; = me forT #0 andk = ooforT = 0.
When kj < 00, then 27% < (S f) < 2"" +1 Further, for
exception of the trivial case we suppose that (S f);

Letm; = 1M, = {j e N:k; =k,} Assume that
sup M, +1 = m,.If sup M, < co,thenm, < coand sup M, =
max M, = m, — 1. It is obvious that m, < m,. Suppose that
we have found m; < m, < --- < m, < 0o, s > 1. Then
we determine m,,, as m,,, = supM + 1, where M, = {j ¢
N k; = k,, }. By the definition 27 < (S f); < 2 K ¥l

]<ms+1 Landk,, <k, ,s>1

Further, for convenience let km

then '

=n;andmg,, -1 =m.,;

TS <2 mesjsmy,,  (45)

andn, < ng, s> 1.
Let N, = {s € N : m, < oo}. Then from (45) it follows

N= U [ms’msﬂ)' (46)

seN,

There are two possible cases: (1) N, = N and (2) N,
{1,2,...,80}, 80 > 1.
Case (1) Ny = N. Since n, < ng,;, s > 1, then —n, — 1
n.,, + 1. Therefore, using (45) and (6), we have

IN

2—n,—1 _ 2—ns -2 n,—1 < 2~ns _ 2"””2”

!
mg,,

Z Ap ("’ m;u)fi

-]
=ty

< (S Dy, = P, =

+ ,’:; [Al,l (i’ m;-r—l) - Al,l (1’ ms+2)] fx (47)

!
Mgya

= Z All (1 ms+l Mgypm s+l)
i=m! g

ZAIH—I

0
X Z Ar,l (i’ms+2)fi'

1=mg,s
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Using (45), (46), and (47), we get

!
"1 me,

I5i 1= 3 Yol 0 < X" Y

s>1 i=m, i=m

—y Y

I—YH

'”:fz
S
Z Al,l (1’ ms+l) fl

.= -
i=m_,, =my

< Z
s

+ZZAIY+1( Mgy, M S+l)

r=0 $§
0 svl
X Z Ar,l (i’ ms+2)fi Z Uy = Il F ZI
i=mg,, i=my

(48)
First we estimate I;. Using Holder’s inequality twice, we have

qlp’

(p-alp

' q(p-1)/(p—q)
"1502 P’ _p,
< Z Al (1 mm) (49)

s pl(p—q)
q

Z %

i=my

mi+2 q/p
x (z (v,-f,->"> < BFP|£1
N i £

where

q(p-1/(p-q)

U
My

B=Y( > Al (im,)v’
§ \i=m,,

m:+l P/(P_{l)
% q
3 u .
i=m,

’

(50)
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Next we need the following obvious inequality:

! /
+ ;s —
A; ZA{I (],1) vjp
J=i

_ AP
_AI,I(II ZAAII ],
J=i+1
(51)
mg,, i
>AP (,1) + ZAA ],i)v;.P

Jj=itl

(ZAII (j»1)

Now, taking into account the above inequality (51) and
using (10) and (7), we estimate E,:

! . !
)’ ms+1 St ms+2'

! plg-1/(p-q)
- s+2 542 ’ . .t
B, « Z Z (ZAII),I (_],I)Vjp )

s+l j=1
' /(p=q) /
s+1 P P 1 ms+2 ’
X ”2 A? ZAfl(j,l)vJP
k=m, Jj=i
Mo [0 plg-1)/(p-q)
P .
<) (ZAM (1) vy )
% is, \
; pl(p-q) o ' (52)
(I o P . —p
X (Z“k) A (ZA“ (J» 1) v )
k=1 j=i
ofoo | plg-1)/(p-q)
P
<<Z ZAH ji)
i=1\_j=i
i P/(P"l) 00
‘l
X(Z“k (ZAII(J’ i )
k=1 J=i

= (B, 1+ Y7,
From (49) and (52) we have

L < Bl (+ D], < B¢+ D 1], (53)

Now we estimate I, r = 0,1,...,] - 1. Let N, = {k =
mg, s € Nj
Assume that A% = A‘llr+1(m5+2’ mL,) Yo o ul if k

mg,; € N;and A = 0ifk ¢ N;. Then

(9] (o) q
I = ZA'i(zA,,, (i, k) f,-) =187 fllg.a

k=1 i (54)

r=0,1,...,[ - 1.

The operator S is the operator S, , forn = r+ land 1 <

r+ 1 < L Therefore, by our assumption we have || S || «
B(r + 1) = maxg,, B,(r + 1). Hence,
I < gglth' (r+1), (55)

where

oo / oo plg-1)/(p-q)

5 palp-@) e P
(Bt(r+1)) =Z(ZA‘ZI (],z)vjp )
S\

i pl(p=q)
(Z rt+1 A )

o ! _ /
xA§<ZAﬁ1 (j,i)vj”).
j=i

(56)
We estimate the expression Z,\ AL kAl
ZAr t+1 (l’ k) A{l’;
RENC)
mg,,
. !
Z AZ,[H ("ms+2)A{1’,r+1 (m5+2, m5+1) Z u‘ll
ms+2$i j=ms
(use the left side of (6) and nonincreasing of A” Lt 41 (0 j) inthe
second argument)
m s~l
. (I
Z Alt+l( s+1) Z RS Z ZA““(’:])uj
Mg,y Si j=m mg,,<i j=m,
i
Z Lt+1 l ]
(58)

Substituting the obtained estimate in (56), we have E, (r+1) <
B, (I + 1). Therefore, from (55) we get

I <<maqu C+0|f5, < B A+ D]}

" 69)
r=0,1,...,1-1.
Then from (48), (53), and (59) we obtain
IS fllgu < BA+ D10 (60)
IS/ < B+1). (61)

Now we turn to case (2) Ny = {1,2,...,50,}, 1 < 55 < 00.
In this case we have m; < coand m, ,, = co. Here there are
two possible cases: 1, < coand n, = co.

Below we suppose that Y!_, = ¥!_ ifk < 0.



Letn, < co.Then

=3 Y )

s=1 j=m,

IS7 £l

S—2 m

)

s=1 j=m,

(62)

m
s,fu+ Z Slf
j=m,

so—1

S NCT

Jj=m

q
up=h+hL+J.

0

IfJ; #0, then s, > 2, and as in the case N, = N using (47), we
estimate J; and as a result we get

I < BT+ D) |15, (63)

Using (45) and Holder’s inequality, we estimate the value J,:

]2<2q ‘0' Zu

j=myg,

(64)

=My f=mg,
q(p-1)/(p—q)
Y4 1y,
< Z Al,l (l’ms )Vz
i=m;

(p-9)lp

' pl(p=q)
Y
x(Zﬂ) 1715,
j=my

Using (7) and (10), we estimate the expression in the square

brackets:
ap-D/(p=a) s pl(p=aq)
hY
A4 q
m. ) .z%)

00, !
S A

.
#ms()
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00 o ’ plg-1)/(p—q)
< Z (ZAI,I (j,1) ";P )
i=ml \ j=i

/ pl(p—q)

00 , ﬂls(]
AT(ZAM (i) vi? ) Z uj
J=i

J=mg

- & , plg-1)/(p—q)
< z (ZAI,I (j»1) V;'p
=t 0

i j=
pl(p=@ o5
A% (ZAI,I (j1) V;p )
j=i

q

X :

( uj
j=1

< (B, 1+ )P,

M~

1l

(65)
Therefore,

o< (B A+ D)|f],, < B'U+ DS, (c6)

Now we estimate J;. Since 27 < (S f); < 27" for all
jzmg,then (8 f); < 2(S/ f), forall j,t > m, . Hence,

t
Jy< sup Y (57!

thSO j:mso

1 ¢
2% sup <ZA,,~1 , @, t)f,) Z u‘}.
J=my,

t=my

(67)

Further, as for the estimate of ], by Holder’s inequality, we

have
, q(p-1)/(p-q)
V(—p )

>p/<p—q) (p-aip

J; < sup
tzm,,

(ZA(II’1 (i, t)
i=t
t ) (68)
x < Y ul 115,

< B (1+D|fl, < B' 0+ D|f],

From (62), (63), (66), and (68) we have (60) and (61). If
n, = oo that means k,, = oo, then T; = 0 for j > ms,
thatis, (S; f); = 0 for j > m; . By the assumption (S f),
therefore, s, > 1. Thenm, < ‘oo and Sy = 2. Hence,

Sp—2 m 1 mio
"Sl*f"Z Zl Sl f Z (Snf) ]l + ]2
s=1 j=m J:mso—x

(69)

This, together with estimates (63) and (66), gives (60) and
(61). Thus, if B(I + 1) < 0o, then the operator S is bounded
froml, , to,, and estimate (61) holds. Consequently, for any



