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Preface

Numerical simulations of transport processes in flows have been developed mainly in
the aeronautical and atmospheric sciences. The majority of problems that have been
investigated in these areas of research concern flows around a body, or external flows.
Computational studies of flows in the interior of a body, which are important in mechanical
engineering and related fields, have appeared relatively recently.

The basic equations of heat transfer and fluid flow have been well established. The
chief interest is in how to solve them. The real issue here is associated ‘with the boundary
conditions. In the case of external flows, the boundary conditions are usually given in a
comparatively simple manner in the infinite far-field and on the surface of a body. On the
other hand, for internal flows, one needs to specify the boundary conditions on the inner
surfaces of a closed space. Therefore, the proper prescription of boundary conditions and
their appropriate modeling are the most crucial factors that influence computed results. It is
extremely difficult to reproduce faithfully physical phenomena of interest by numerical
computations without using suitable models of actual boundary conditions, no matter how
accurately the basic equations are solved.

In the majority of textbooks and references on numerical analysis, including those
which cover Computational Fluid Dynamics (CFD), discussion has been centered almost
exclusively on the solution methods for equations. Such materials may serve as excellent
sources of information when one is required to perform accurate and efficient
computations. However, they are often of little use in an attempt to understand the relevant
transport processes.

Hence, to conduct numerical simulations of fluid flow and heat transfer, one should
have basic understanding of the physical phenomena of importance. the possible effects of
boundary conditions on them, the influential parameters of the flow problem under
investigation, and so on. Since the transport processes of interest are controlled by
boundary conditions rather than by the basic equations, successful computations cannot be
expected unless in-depth understanding of the pertinent physics is secured. This implies
that one should conduct experiments in order to undertake computations.

One may wonder if it is possible to carry out such experiments by computations:
namely, numerical experiments. It is most likely that, when a numerical analyst who is
unfamiliar with physical phenomena happens to acquire reasonably precise numerical
predictions of a heat transfer or related problem, he has succeeded in his numerical
experiments.

Some of the latest personal computers are comparable in their capabilities to the
mainframe machines that were considered to be standard ten vears ago. These powerful
computing facilities now make it possible to perform numerical experiments and, thereby.
help us in appreciating significant transport processes. Such experiences are of immense
usefulness in building up foundations for conducting more complex and accurate numerical
calculations.
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These ideas have motivated us to plan a book in the present form. To accomplish our
final goal, the principal emphasis has been placed on simple and straightforward numerical
techniques, rather than on overly sophisticated matters. Consequently, the apparatus and
conditions of experiments, so to speak, may be readily modified so that improved and
enlarged knowledge of the phenomena under investigation may be gained.

The present book should be of value to the following students and industrial
practitioners:

« Those who are familiar with numerical simulations and who attempt to solve numerical
fluid flow and heat transfer probleins for the first time.

» Those who have the essential understanding of transport processes in heat transfer and
fluid flow and who are considering computational studies on the subject without practical
experience in numerical analysis.

» Those who are already conducting research on numerical heat transfer and who wish
to consolidate a firmer basis on related topics.

The features of this book are that

1. It enables the reader to learn fundamental concepts and methodologies of numerical
heat transfer and fluid flow by hands-on experience in solving basic problems on heat and
mass transfer on a personal computer.

2. A systematic description is presented throughout the entire book. At the same time, any
one of the chapters is nearly seif-contained for pariial referencing. Care is exercised to
allow the reader to grasp the contents of each chapter at a glance.

3. The computer programs used for solution of example problems are written in the
BASIC computer language. This is believed to be highly adaptable to the user environment
provided by most personal computers. Responses due to the changes in parameters and
boundary conditions can be examined with ease.

4. Owing to the above considerations, the phenomena of interest handled within the scope
of the present book are rather limited. However, attention is paid such that more
complicated and extended problems can be tackled.

5. Hence, we do not deal with combustion and radiation heat transfer in an explicit
manner. However, the approaches taken in this book will suffice to account for these
effects, as long as they may be regarded as classes of problems that involve heat
generation.

Finally, our special thanks go to Professor Takao Nagasaki of the Tokyo Institute of
Technology for his substantial help in writing the computer programs included in this
book. The assistance of Mr. Hidenori Onda of the Maruzen Book Company in the planning
and editorial processes of the book is also acknowledged.

Summer 1988
Susumu Kotake

Kunio Hijikata
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Preface to the English Edition

Our original aim for writing the Japanese language version of this book was to provide
the reader with an opportunity to conduct 'numerical experiments for computations',
through which he/she can find a way to the phenomenological understanding of heat
transfer and fluid flow processes. Through easy-to-follow examples on fundamental topics
of heat transfer and fluid flow discussed in the text, the reader is taken to the point where
he/she can actually experience the entire course of work for finding out what the most
predominant and controlling factors are that govern the phenomena of interest. It is also
possible to know what the most suitable and pertinent numerical methods are to solve the
problem. Such experiences allow the reader to build a sufficient foundation for
overviewing more practical engineering fields. They will also be useful for developing a
manipulative competency with effective calculation schemes for solving the real-world
problems. .

The authors wish to express our great appreciation to Maruzen Publishing Co. for
allowing us to translate and to publish our original Japanese-language book in English,
although the English version has been slightly revised from the original text.

We also wish to acknowledge Dr. Toru Fusegi for his contribution for not only
translating the text into English but improving the description of the book by providing us
with numerous valuable suggestions. Thanks are also due Elsevier Science Publishers
B.V. for making possible the publication of the English edition of the book.

June 1992

~
=

Translator's note

The basis of the present English translation is the original Japanese edition published in 1988 from
Maruzen Book Company. In preparing the English text. rather extensive revisions were undertaken by
keeping close contact with the authors so that their idea for improving presentation of the subjects of
interest is reflected satisfactorily in the present book. Comments and suggestions directed to the Japanese
language version have also been incorporated.

In a view toward better clarification of relevant transport processes, Chapters 5 and 11 have been
thoroughly reorganized. For the latter, the task includes replacing three calculation codes for different
turbulence models with a single program with which users can compute flow using a desired model. A good
number of exercise problems have been appended. They will help enhancing readers' understanding of both
simulated physical phenomena and numerical codes. When this book is used as a textbook or reference book
for college engineering courses, these problems may serve as an appropriate source for the homework
assignment to the course instructors.

The thirteen simulation programs contained in the attached floppy disk have been thoroughly checked
and all of the results appearing in the text were generated newly for the present book. It is worth
mentioning that very minor modifications of source codes are necessary in order to reproduce time history
plots such as those shown in Figures 5-5 and 12-4. Both authors and I have spent considerable effort to
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exclude program bugs; however, in case the reader detect any inconsistency, we would be greatly appreciate
itif you could inform us of the difficulty.

A further remark on the programs may deserve attention. For computer simulations of flow and heat
transfer discussed in Chapters 5 through 12, two distinctively different numerical techniques are employed:
the explicit scheme and the implicit scheme, for which details are available in Chapter 2. Using an explicit
solver, field data at a new time level are substituted into dimensional arrays to update existing values at a
prior time step. Hence, memory allocation can be kept minimum. This is an attractive feature especially if
we must store all the data for the entire calculation field at a given time step. This is the case when we
consider fluid motions accompanying recirculating flow, since local flow patterns influence the whole field.
This appears to be the major motivation for employing an explicit method in Chapters S, 7 - 9 and 12.
Note that there is an upper limit for time increments to perform stable explicit calculations; refer to Chapter
2. Hence, if the steady state is of primary concern, we can reach the steady-state solution in fewer time steps
using an implicit solver because we can assign a much larger time increment than is permitted to an
explicit counterpart. Implicit computations are particularly preferable if the requirement for data storage is
not excessively severe. This applies to the cases in which flow features along lines of constant cross-stream
coordinates with respect to the main flow direction are unaffected by the downstream conditions.
Consequently, computations can be processed by successively replacing field data at previous grid lines with
those from new stations. This calls for only one-dimensional arrays in two-dimensional calculations.
Implicit solvers are utilized in Chapters 6 and 11, which deal with boundary layer flow, and in Chapter 10
(secondary motion in a cross section of pipe flow).

I would like to express my sincere gratitude to Mr. Patrick E. Phelan of the Tokyo Institute of
Technology for critically examining the entire manuscript and providing me with many valuable
suggestions. I am also very grateful to Professor Shoichiro Nakamura of the Ohio State University for
reading part of the manuscript. Comments from colleagues of both authors and mine are faithfully
acknowledged. I am thankful to my family for their understanding and support throughout the course of this
work.

Toru Fusegi
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Using the Program Disks

The book contains two floppy disks, each of which stores a complete set of the
simulation source codes to be discussed in the text. These programs are recorded in ASCII
format and can be run either on IBM PC® or Macintosh® using Quick BASIC® (The
programs run also with QBASIC that is supplied with the MS-DOS® 5.0 package). They can
be edited with appropriate text-editing software. Refer to the relevant reference material of
the software for detailed information. Macintosh users are advised not to attempt to change
the window size while a program is running or to use multi-tasking.

Every pair of the programs with the same name have identical subroutines in which
calculations are processed. Differences occur in program modules written for data in/output
(1/0). One feature available on the Macintosh version only is the on-line Help menu. Default
parameter values are preset in the programs for a sample run. The user can either adopt
these data or modify any desired variables interactively.

The following program files are included in each disk:

BODYFLOW.BAS, CAVITYFL.BAS. CHANNEL.BAS, CONDUCT.BAS, DIFFCOM.BAS.

DUCTFLOW.BAS, FEMFIN.BAS, MIXEDBDL.BAS. PREMIXCM.BAS, SECOFLOW.BAS.
STEPFLOW.BAS, TURBFLOW.BAS., TURBPIPE.BAS. BODYFLOW.EXE, CAVITYFL.EXE,
CONDUCT.EXE. MIXEDBDL.EXE, SECOFLOW.EXE, TURBPIPEEEXE

where *.BAS is an ASCII-saved source program and *.EXE refers to an executable module
which has been compiled. If a memory error occurs, reduce the size of dimensional arrays
and recompile. A graphic monitor (VGA) is required to display computed results.

Sample datafiles which can be loaded and used to produce various graphic outputs are
also found on the disks:

BDL.DAT (for MIXEDBDL), SEC.DAT (for SECOFLOW), TBP.DAT (for TURBPIPE)
The user is urged to make a backup copy of the original disks. The authors, translator.

or publisher will not assume responsibility for files erased from the disks or altered
accidentally.
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CHAPTER 1

FUNDAMENTAL HEAT TRANSFER AND FLUID
FLOW

1-1 Basic Equations

The basic equation system of heat transfer and fluid flow consists essentially of the
continuity equation (the mass conservation equation) and the conservation equations of
momentum and energy. In this book, we focus our attention to the solution of these
equations on a personal computer in order to assist our understanding of the important
basic transport processes of fluid flow and heat transfer. We will not consider overly
complicated phenomena which are not relevant to our discussion. We restrict ourselves to
physical phenomena which are present under the following conditions:

(1) Fluids are incompressible and Newtonian. We will not account for the variation of
density unless it is responsible for the generation of buoyancy forces. Steady as well as
unsteady features are dealt with.

(2) Physical properties of fluids are constant.

(3) Among various forms of the conservation of energy. only that of thermal energy is
considered. Dissipation, which is an irreversible transformation from kinetic to thermal
energy, will be neglected except for that occurring in turbulent flows.

Note that simple modifications to the computer programs appearing in succeeding chapters
will allow us to accommodate effects due to (2) and (3). We recommend readers to attempt
them as extended exercises. Notice that removal of the first assumption will lead us into
situations which are beyond the scope of this book. Under such circumstances. we would
have to handle additional physics such as the propagation of acoustic waves. They would
demand a larger memory size owing to use of an increased number of grid points. a new
computational algorithm to manage the effects of these processes, and so on.
Under these conditions, the following basic equations are obtained:

[Continuity equation]
ou ov odw
ax+8y+a: =0 -1

[Conservation equations of momentum]
ou ou  _ou odu| op du  o’u o
pP al+ll$+Va—y+W¥ +x—‘u ax'_’+a}-2+a:?_

)+ 8P
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av+ua—v+va—v+wa—v +a_p_ i a7 2V +
Plac™ 3 dy =] 9y =H ax2  dy? 2t 2| &P (1.2)
B_W+uﬂ+vaw+ aw+a_p= 82w+82w+82w i
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[Conservation equation of energy]
C(arwar aT ) }\E)T T 8T+Q
Per(a 0x a2 oy a:2 (1.3)

where u, v and w are the velocity components in the x, y and : directions, respectively, p is
the pressure, p is the density, and T is the temperature. The components of gravitational
acceleration in the x, y and : directions are denoted by gy, g, and g, respectively. The
symbol p is the fluid viscosity [kg/m-s], ¢, is the specific heat at constant pressure
[J/kg-K], and A is the thermal conductivity [W/m-K]. The volumetric heat generation rate
per unit volume is represented by Q. The momentum conservation equations are known as
the Navier-Stokes equations. The reader is urged to refer to appropriate fluid mechanics
textbooks for derivation of these equations.

In this book, we will principally analyze two-dimensional flows. There are the
following two possible situations:

(1) The velocity component in the z-direction (w) is negligibly small compared to those in
the other directions, i.e., 4 and v. Furthermore, u, v and T are not considered to be
functions of z.

(2) Changes in u, v, w and T in the x-direction, say, are assumed to be known. In other
words, the transport processes under investigation may be regarded as functions of y and =
only.

When the first presumption is valid, we can further simplify the basic equations:

[Continuity equation]
M, Moo 1.4
ox dy (1.4

[Momentum conservation equation in the x-direction]

(au o a_u+ v a_u) 9P _ — d%u . 0%u .
Plar " ax Yoyl Tax T 5 o) TP (1.50)
Unsteady  Convection  Pressure Viscous Buoyancy force

term terms term terms term

[Momentum conservation equation in the y-direction]

p(av+ av+vav)+ap i 9%v av) -

i — |4 = pl— g\

) dx a\ ! a_\'- a_\'—

Unsteadv ~ Convection  Pressure Viscous Buovancy force
term terms term terms term

(1.5h)
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[Energy conservation equation]

¢ a—T+ua—T+viZ)—)\ 83T+83T +0Q
Porlar T ax dy ax? dy2 (1.6)
Unsteady  Convection Conduction  Heat Generation
term terms terms term

The physical significance of each term is also indicated in these expressions. When gravity
has an appreciable effect on the pressure, it can be compensated for in the following
manner. By noting that the pressure decreases vertically upward (in the negative x-
direction, say) even in a stationary state, let us replace the pressure p with pg:

P=po+ p*gux (1.7)

where p* is a fixed reference density. The pressure and gravity terms in the basic equations
are rewritten as

. Y oL (p-p*)g_, (1.8)

If the variation of the density, p, depends only on the temperature. T, then,
p-p*=-pB(T-T% (1.9

where f3 is the volumetric thermal expansion coefficient defined as —(dlnp /dT). For an
ideal gas, we derive 8= 1/T from the equation of state p = pRT. where T is measured in an
absolute temperature scale and R is the gas constant.

For generality, we usually nondimensionalize a given fluid flow and heat transfer
problem with the aid of appropriate scales of length, time and other involved properties.
Define the following nondimensional quantities (with a tilde, ~) by selecting U, L and AT
as the reference scales for velocity, length, and temperature difference, respectively:

el Eel Fe¥ Sut b
LUt U LT
(1.10)
~ T—=T* ~ 0 ~
T = , p= 14 =, Q = L
AT p*U? pFcp*AT
Then, we can rewrite the basic equations (1.4) - (1.6) as
[Continuity equation]
ou dv
=0 (L.11)

Fr



