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Enumerate, count, number, call over, run over, take
an account of, call the roll, muster, poll, sum up,
cast up, tell off, cipher, reckon, reckon up, estimate,
compute, calculate.

Roget, “Thesaurus”

PREFACE

The first question asked by many students in a course in graph theory is
“How many graphs are there?”” This is also the first problem we attempted.
As circumstances had it, we learned by a most circuitous procedure that
George Polya had already counted graphs with a given number of points and
lines. Starting from his formulas, it was a relatively routine matter to enumer-
ate rooted graphs, connected graphs, and directed graphs. Subsequently,
we counted various other types of graphs and when we had temporarily
exhausted all the easy counting problems, we published a paper presenting
27 unsolved enumeration problems. By now, almost half of these problems
have been resolved, and successive revisions of the original list of 27 unsolved
enumeration problems were prepared. Our closing chapter brings this topic
up to date.

Although Euler counted certain types of triangulated polygons in the
plane, the major activity in graphical enumeration was launched in the
preceding century. Cayley counted three types of trees: labeled trees, rooted
trees,and ordinary trees. Even earlier, the world’s first electrical engineer,
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Kirchhoff, implicitly had found the number of spanning trees in a given
connected graph, and thus in particular, the number of labeled trees. In
one of the earliest instances of support of combinatorial research by the
military (aside from Archimedes), Major P. A. MacMahon wrote a compre-
hensive treatise that touched on graphical enumeration, but only peripherally.
There is another pre-Polya innovator in the art of combinatorial enumera-
tion. This largely unsung hero, J. Howard Redfield, wrote exactly one
paper on the subject ; in it he anticipated many of the counting methods and
results found subsequently. His paper went almost completely unrecognized.
Long after Polya’s great work served as the impetus for most of the con-
temporary research on the counting of graphs, proper acknowledgment to
Redfield was accorded.

Although we are restricting ourselves to the enumeration of various
kinds of graphs, there are many types of configurations that can be so handled.
The following structures, none of which is blatantly graphical at first blush,
have all been enumerated by clever transformations into graphs or sub-
graphs: automata, finite topologies, boolean functions, necklaces, and
chemical isomers.

It is not only true that a full book can be written on each of our ten
chapters, but a fortiori, an entire book has been written on one of the sections
of our first chapter: a formal but comprehensive monograph entitled
“Counting Labeled Trees’’ by John Moon. Clearly the material to be included
in each chapter must necessarily be a matter of personal taste.

The plan of the book is as follows. We begin with labeled graphs in
Chapter 1, both in order to get them out of the way and because they are much
easier to count. We then develop the basic enumeration theorem of Pdlya in
Chapter 2. With this available, we count in Chapter 3 an enormous variety of
trees and then in Chapters 4 and 5 various kinds of graphs and digraphs.
Chapter 6 presents the powerful Power Group Enumeration Theorem and
shows how to apply it. Chapter 7, Superposition, counts those configurations
that can be constructed by “plopping things on top of other things.” Non-
separable graphs, also known as blocks, are then counted in Chapter 8 using
the ingenious methods conceived by the hero of unsolved enumeration
problems, R. W. Robinson. Some mathematicians feel that a knowledge of
the order of magnitude of the number of configurations of a certain type is
more important than the exact number in a form which is inconvenient for
calculations. Rather than report lower and upper bounds, we develop exact
asymptotic numbers in Chapter 9 for several different graphical structures.
Necessarily this is only illustrative, as again a whole book can be written
on graphical asymptotics. Finally as a special feature we conclude with
a new comprehensive definitive list of unsolved graphical enumeration
problems.
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The exercises range widely in difficulty from routine to intractible. Thus
not all the exercises are intended to be worked out in detail by the reader.
Frequently, counting formulas are given in exercises in order to include this
information in the book. There are also abundantly many exercises within
the text, not labeled as such, in the form of results whose proofs are omitted.
We have found it convenient to indicate Equation 7 of Section 1 of Chapter 3
by the ordered triple denoted (3.1.7) and trust that the reader will forgive us
for using this complicated notation. The end of a proof is marked by the
symbol //.

[t is our hope and belief that the present volume will make enumeration
techniques more available and more unified. In turn this should serve as a
stimulus for the investigation of open counting questions.
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The Royal Mathematician was a bald-headed,
nearsighted man, with a skullcap on his head and a
pencil behind each ear. He wore a black suit with
white numbers on it.

“I don’t want to hear a long list of all the things
you have figured out for me since 1907, the King
said to him. "'l just want you to figure out right now
how to get the moon for the Princess Lenore. When
she gets the moon, she will be well again.”

“I am glad you mentioned all the things 1 have
Sfigured out for you since 1907,” said the Royal
Mathematician. 1t so happens that 1 have a list
of them with me.”

James Thurber, “Many Moons”
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Don'’t rely too much on labels,
For too often they are fables.

C. H. Spurgeon

Chapter 1 | LABELED
ENUMERATION

We consider labeled enumeration problems first because they always
appear to be much easier to solve than the corresponding unlabeled prob-
lems. For example, the number of labeled graphs is instantly found from
first principles, while the determination of the number of unlabeled graphs
requires a considerable amount of combinatorial theory including Pélya’s
Theorem.

We shall present in this chapter a selected sample of some of the out-
standing and interesting solutions to labeled enumeration problems in
graph theory, including the determination of the number of labeled graphs,
connected graphs, blocks, eulerian graphs, k-colored graphs, acyclic digraphs,
trees, and eulerian trails in an eulerian digraph. Often several different solu-
tions to the same problem will be provided so that the reader has an oppor-
tunity to become acquainted with a variety of useful tricks, skills, devices.
and schemes. For example, we shall see that when dealing with labeled
enumeration problems, the exponential generating functions provide a
natural vehicle for carrying sufficient information for a solution. On the

1



2 1 LABELED ENUMERATION

other hand, by examining a small amount of data, one can often quickly
find a required formula which can then be verified by an induction argument.

1.1 THE NUMBER OF WAYS TO LABEL A GRAPH

A graph G of order p consists of a finite nonempty set V = V(G) of p
points together with a specified set X of g unordered pairs of distinct points;
this automatically excludes loops (lines joining a point to itself) and multiple
lines (in parallel). A pair x = {u, v} of points in X is called a line of G and
x is said to join u and v. The points u and v are adjacent ; u and x are incident
with each other, as are v and x. A graph with p points and g lines is called a
(p, q) graph. Our terminology will follow that in the book on graph theory
[H1]. However, we plan to include most definitions.

It is most convenient and illuminating to represent graphs by diagrams.
Consider the graph G chosen at random with

= f N 3
V—'Ql’lgl’2.l3.l4}
and

I P o N P N R
X = {{v,. 05}, {v2. 03}, {03, 04}, {vg. 01}, {04, 03} )

This is illustrated by the diagram in Figure 1.1.1. Only the names of the
points have been used in this diagram. The five lines of G are represented by
the line segments which join the pairs of points in the figure. The diagrams
of all graphsof order 4, arranged by number of lines, are shown in Figure 1.1.2.
Henceforth we shall also refer to such diagrams as graphs by an abuse of
language which will cause no confusion.

In a labeled graph of order p, the integers from 1 through p are assigned to
its points. For example, the random graph (of Figure 1.1.1) can be labeled
in the six different ways indicated in Figure 1.1.3.

Thus two labeled graphs G, and G, are considered the same and called
isomorphic if and only if there is a 1-1 map from V(G,) onto V(G,) which
preserves not only adjacency but also the labeling. One can easily see then,
that all of the different labelings of the random graph are displayed in

Figure 1.1.3.
“ 2
V,EI V3

Figure 1.1.1
The graph with four points and five lines.
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Figure 1.1.2
The 11 graphs of order 4.

Two natural questions now arise. The first asks: How many labeled
graphs of order p are there? The second is: How many graphs of order p
are there? The first question is so easy that we deal with it next. The second is
much more difficult and will be treated in Chapter 4.

We shall answer the easier question by generalizing the problem ever so
slightly to that of finding the number of labeled graphs with a given number
of points and lines. Let G ,(x) be that polynomial which has as the coefficient
of x*, the number of labeled graphs of order p which have exactly k lines.
Such a polynomial is ordinarily called the “‘ordinary generating function”
for labeled graphs with a given number of points and lines. If V' is a set of p
points, there are (§) distinct unordered pairs of these points. In any labeled
graph with point set V, each pair of points are either adjacent or not adjacent.
The number of labeled graphs with precisely k lines is therefore (‘E’).

Theorem The ordinary generating function G,(x) for labeled graphs of
order p is given by

m

G, x)= ) (':)x" =(1 4 x)" (1.1.1)
]

k=(
where m = (%).

Since G (x) = (1 + x)" and the number G, of labeled graphs of order p is
G,(1), we see that

G, =2%. (1.1.2)
1 4 14 13 2 4 2 3 3 2
3 2 2 3 2 a4 B i 4 R

Figure 1.1.3

The six different labelings of a graph.
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1 1 1 1 1 1 1
[e] o
o o Oo-—0 / [¢] [} \ A (L() OA CAD
3 2 3 2 3 2 3 2 3 2 3 2 3
Figure 1.1.4
The eight labeled graphs of order 3.

For p = 3; this formula is vividly illustrated in Figure 1.1.4. Thus there
are eight labeled graphs of order 3 but only four graphs of order 3; and there
are 64 labeled graphs of order 4, but only 11 graphs of order 4. The question
then arises: In how many ways can a given graph be labeled? To provide an
answer, we must consider the symmetries or automorphisms of a graph.
A 1-1 map « from V(G) to V(G,) that preserves adjacency is naturally called
an isomorphism. If G, = G, then a is an automorphism of G. The collection
of all automorphisms of G, denoted I'(G), constitutes a group called the group
of G. Thus the elements of I'(G) are permutations acting on V. For example,
the random graph G has exactly four automorphisms, so that I'(G) contains
the permutations in the usual cyclic representation :

(01)(02)(v3)(vg), (v)(3)(va04), (0403)(02)(vg), and (0q03)(0y04).

Let s(G) = |I'(G)|, the order of the group G, denote the number of symmetries
of G. Then the answer to the labeling problem posed above is provided in
the following theorem.

Theorem The number of ways of labeling a given graph G of order p is

(G) = p!/s(G). (1.1.3)

The proof is most easily obtained using some of the group theoretic
results of Chapters 2 and 4, see [HPR1]. To illustrate, we simply observe that
the random graph G has p!/s(G) = 4!/4 = 6 labelings, and the six different
labeled graphs displayed in Figure 1.1.3 complete the verification of (1.1.3)
for this graph G.

Although this theorem is stated only for graphs, similar versions of it
hold for any finite structures with specified automorphism groups, such as
rooted graphs, directed graphs, other relations of various types, simplicial
complexes, functions, etc.

A directed graph or digraph D of order p consists of a finite nonempty set
V of distinct objects called points together with a specified set X of g ordered
pairs of distinct points of V. A pair x = (u. v) of points in X is called an arc
of D and u is said to be adjacent to v u and x are incident with each other,
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Figure 1.1.5
The 16 digraphs of order 3.

as are v and x. The outdegree of point u is the number of arcs with u as first
point ; the indegree as second point. The diagrams of all digraphs of order 3
are shown in Figure 1.1.5. As in the case of graphs, we refer to the diagrams
themselves as digraphs.

Labeled digraphs of order p have the different integers 1 through p
assigned to their points and the group of a digraph D, denoted I'(D), consists
of the permutations of the points V(D) of D that preserve adjacency. Since
the number of labeled digraphs of order p with exactly k lines is (P, V),
we have the following results which correspond to (1.1.1) and (1.1.2).

Theorem The ordinary generating function D, (x) for labeled digraphs
of order p is given by

p(p—1) 1
D,(x)= Y (”(”k ))x"z(l + x)Pe= D, (1.1.4)

k=0
Obviously D (x) = G3(x) so that
D,(1) = 2?2~ = GX{(1). (1.L.5)

In a round-robin tournament, a given collection of players play a game
in which the rules do not allow for a draw. Any two players encounter each
other just once and exactly one emerges victorious. Therefore a tournament
is a digraph in which every pair of points are joined by exactly one arc. We
conclude this section by observing that the number of labeled tournaments
of order p is precisely 2%, the number, as in (1.1.2), of labeled graphs of
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2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
Figure 1.1.6

The eight labeled tournaments of order 3.

order p. This observation is verified for p = 3 by Figures 1.1.2 and 1.1.6.
Furthermore, the natural correspondence between these two classes of
graphs is indicated by the order in which they appear in the two figures.
Each labeled tournament corresponds to that labeled graph in which the
points with labels i and j are adjacent if and only if i < j and the arc from
i to j is present in the tournament.

1.2 CONNECTED GRAPHS

Let G be a graph and let vy, vy, 05,..., v, be a sequence of points of G
such that v, is adjacent to v;,, fori = 0 to n — 1. Such a sequence together
with these n lines, is called a walk of length n. If the lines {v;, v;,,} fori =0
to n are distinct, the walk is called a trail. If all the points are distinct (and
hence the lines), it is called a path of length n. Then a connected graph is a
graph in which any two points are joined by a path; see Figure 1.2.1. The
number of labeled connected graphs of order 4 can be calculated by brute
force if we apply (1.1.3) to each of the six graphs in Figure 1.2.1. The orders
of the groups of these graphs, from left to right, are 2, 3, 2, 8, 4, 24. Then from
(1.1.3) it follows that the number of labeled, connected graphs of order 4 is 38.
This information provides no hint as to how to determine a formula for C,.
the number of connected, labeled graphs of order p. To that end we require
the next few definitions.

A subgraph H of a graph G has V(H) < V(G) and X(H) < X(G). A
component of a graph is a maximal, connected subgraph. A rooted graph
has one of its points, called the root, distinguished from the others. Two
rooted graphs are isomorphic if there is a 1-1 function from the point set of
one graph onto that of the other which preserves not only adjacency but
also the roots. A similar requirement serves to describe rooted, labeled
graphs. These ideas can now be used to obtain the following recursive formula.

L NN KX

Figure 1.2.1

The six connected graphs of order 4.
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Theorem The number C, of connected, labeled graphs satisfies

P 1p41 14 p-k
Cp: 2@y — _ Z k( )2‘ 2)C,. (1.2.1)
Pi=1 \k

To prove (1.2.1) we observe that a different rooted, labeled graph is
obtained when a labeled graph is rooted at each of its points. Hence the
number of rooted, labeled graphs of order p is pG,. The number of rooted,
labeled graphs in which the root is in a component of exactly k points is
kCy(£)G,-x. On summing from k = 1 to p, we arrive again at the number of
rooted, labeled graphs, namely

ki k(i)CkG,,;,(. /]

The values of C, in Table 1.2.1 are listed in [S4].

TABLE 1.2.1
p 1 23 4 5 6 7 8 9
C 1 1 4 38 728 26704 1866256 251548592 66296291072

P

It is important to have at hand the concept of the exponential generating
function and some of its associated properties. We shall therefore introduce
these functions now and use them to provide an alternative form of (1.2.1).

For each k = 1,2,3,..., let g, be the number of ways of labeling all
graphs of order k which have some property P(a). Then the formal power
series

a(x) = i ax*/k! (1.2.2)

k=1

is called the exponential generating function for the class of graphs at hand.
Suppose also that

b(x) = i b,x*/k! (1.2.3)
k=1

is another exponential generating function for a class of graphs with property
P(b).

The next lemma provides a useful interpretation of the coefficients of
the product a(x)b(x) of these two generating functions.



