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Preface

This book is concerned with a set of related problems in probability.
theory that are considered in the context of Markov processes. Some of
these are natural to consider, especially for Markov processes. Other
problems have a broader range of validity but are convenient to pose
for Markov processes. The book can be used as the basis for an interesting
‘course on Markov processes or stationary processes. For the most part
these questions are considered for discrete parameter processes, although
they are also of obvious interest for continuous time parameter processes.
This allows one to avoid the delicate measure theoretic questions that
might arise in the continuous parameter case. There is an attempt to
motivate the material in terms of applications. Many of the topics
concern general questions of structure and representation of processes
that have not previously been presented in book form. A set of notes
comment on the many problems that are still left open and related
material in the literature. It is also hoped that the book will be useful as
a reference to the reader who would like an introduction to these topics
as well as to the reader interested in extending and completing results
of this type.

The first chapter deals with some basic properties of Markov processes
as well as a number of illustrations. The limiting behavior of Markov
chains with stationary transition mechanism is dealt with. There are
remarks on independent random variables and the “theory of errors”
as a motivation for classical limit theorems. The simplest continuous
parameter processes, the Poisson and Wiener (or Browrnian motion)
processes are introduced. A generalization of the classical result of
Polya on recurrence for random walks on commutative countable
groups is given.

A number of models in statistical mechanics, ““learning” theory in
psychology, and in statistical economics are discussed in the second
chapter. The object is to show how Markovian-like models arise in a
variety of applications and how often questions concerning collapsing
of the state space can arise. The concept of ergodicity is already very
important in statistical mechanics. A desire to retain at least an approx-
imate version of the Markov property as well as interest in a central
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limit theorem for dependent processes are evident in the heuristic discus-
sion of the foundations of “non-equilibrium” statistical mechanics.

The third chapter considers a number of results on functions of
Markov processes. Conditions under which a function ofa Markov process
is still Markovian and the relationship between the Chapman-K olmo-
gorov equation and the Markov property are examined. Functions of
Markov processes are generally not Markovian. It is of interest to ask
when a finite state process is a function of a finite state Markov chain.
An interesting algebraic treatment of this problem is given.

The fourth chapter deals with ergodic problems and first discusses the
restriction of a Markov process to a subset of the state space. The L!
ergodic theorem due to Chacon and Ornstein is presented. The concepts
of ergodicity and mixing are introduced and illustrated. Many of the
results in ‘“‘ergodic theory’ assume the existence of an invariant measure.
Conditions of a topological character on the transition operator that
insure the existence of an invariant measure are introduced. Finally,
results are obtained on the asymptotic behavior of unaveraged powers
of the transition probability operator. Such results can be related to a
prediction problem for' Markov processes.

Chapter 5 is devoted to random walks or, more properly, convolution
of regular measures on compact groups and semigroups. A limit theorem
of P. Lévy dealing with the circle group is introduced to motivate the
development that then follows. The uniform or Haar measure on a
compact'group is discussed as the limit law of a convolution sequence
of measures. The corresponding type of limit law for convolution se-
.quences of measures on a compact semigroup is an idempotent measure
under convolution. The so-called “Rees-Suschkewitsch” theorem de-
scribing the structure of compact semigroups is developed in order to
characterize the idempotent measures on a compact semigroup. The
results are illustrated in the case of semigroups of n x n (n finite) transition
probability matrices. These are perhaps the simplest types of limit theo-
rems for products of independent, identically distributed operators
which may not commute.

The sixth chapter deals with nonlinear one-sided representations of
Markov processes in terms of independent random variables. Such a
treatment is motivated in part by prediction problems. A brief discussion
of a corresponding linear representation (the Wold representation) in the
linear prediction problem is given. N. Wiener dealt with such nonlinear
representations in his book Nonlinear Methods in Random Theory
where he discussed coding and decoding. Rather complete results are
obtained for finite state Markov chains. Partial results are obtained for
real-vdlued Markov processes. A relation between such representations
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and the isomorphism problem for stationary processes is briefly in-
dicated.

The last chapter is concerned with conditions for the validity of central
limit theorems for Markov processes. Cogburn’s condition of uniform
ergodicity and its relation to infinitely divisible laws as limiting laws for
partial sums of stationary Markov variables are given. Uniform (or
strong) mixing is also introduced. Both conditions are examined in the
case of Markov processes. Finally a central limit theorem is obtained
using a condition similar to uniform mixing.

A series of notes that relate the material in the text to relevant results
in the literature for Markov processes and more general processes are
given after each chapter. Open questions that are of interest are also
discussed. It is hoped that the text will be appropriate for an audience
with a general mathematical outlook as well as for those with a probab-
ilistic (or statistical) orientation. Readers with a good strong mathe-
matical interest and background whose primary concern is in such areas
as statistical physics, mathematical economics, or learning theory should

_find ideas and methods that are relevant. Several of the questions examin-
ed illustrate the interplay of concepts from probability theory with
other areas of mathematics. The appendices give a discussion of those
ideas from other mathematical areas that bear on the material developed
in the text. : :

The chapters are divided into numbered sections. Sections and formu-
las cited contain just enough information to identify them. For example,
the formulas numbered 2, 1.2, 3.1.2 and referred to in section 6.3 (third
section of the sixth chapter) are formula 2 of the same section, formula 2
of section 1 of the same chapter, and formula 2 of section 3.1, respectively.

I am grateful to the John Simon Guggenheim Foundation for its
support in the year 1965—66 and the Office of Naval Research for fund-
ing of much of the research on which this book is based. I am indebted
to Peter Bickel, D. Brillinger, J. L. Doob, John Evans, D. Rosenblatt,
T. C. Sun and K. Wickwire for their hélpful comments and suggestions.
Lastly, my thanks go to Olive Lee and Lillian Johnson for typing and
correcting the manuscript, and to Diana Marcus for help in proof-
reading.

La Jolla, California 1971 Murray Rosenblatt
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Chapter I

Basic Notions and Illustrations

0. Summary

The probability space for a one sided Markov process with stationary
transition mechanism is set up in the discrete and continuous time
parameter case under appropriate conditions in section 1. The extension
(if possible) to a two-sided process is discussed, as well as the Chapman-
Kolmogorov equation for first order transition probabilities. A number
of illustrative examples are taken up in the following sections. The asymp-

“totic properties of transition probabilities for Markov chains (Markov
processes with a countable state space) are considered in section 2. This
motivates in part the later development of an ergodic theorem (in
Chapter 4 section 2) for Markov processes with a general state space.
The -classical example of a sequence of independent random variables
is taken up in section 3. There is a brief discussion of the theory of errors
and then a derivation of the Poisson approximation to the Binomial
distribution and the normal approximation to the distribution of a sum
of independent random variables, both with error terms. The theorems
on the Poisson and normal approximation are not only of independent
interest but are also used later in Chapter 7 section 1 to obtain a remark-
able result of Kolmogorov on the approximation of the distribution
of a sum of independent and identically distributed random variables
by an infinitely divisible distribution with error term. A brief discussion
of the continuous parameter Poisson and Wiener (Brownian motion)
processes is given in section 4. The classical result of Polya on recurrence
of one and two dimensional and nonrecurrence of three dimensional
random walks is given in section 5. A generalization (due to Dudley) for
random walks on countable Abelian groups is then developed.

1. Markov Processes and Transition Probability Functions

Markov processes are structurally the simplest models of dependent
random behavior through time that have been dealt with. Our concern
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will be with Markov processes whose generating mechanism is stable
through time. To avoid complications let us assume that observations
of some phenomenon are made at times n=0,1,2,.... Let Q (the state
space) be a space of points x representing the possible observations at
any given fixed time. The possible events for which a probability is well
‘defined will be the elements of a Borel field .« of subsets of Q. The stable
generating mechanism for a Markov process is given by its transition
probability function P(x,A) which is assumed to be /-measurable as
-a function of x for each set (or event) 4 in .« and a probability measure
on the Borel field o for each x in Q. Intuitively, P(x, 4) represents the
probability that the observation at time n+1 of the Markov process
will fall in the set A given that, at time n, observation x was made. With
an initial probability measure u (at time 0) on the Borel field ./ a discrete
time parameter Markov process with initial distribution u and stationary
transition probability function P(-,-) can be constructed as follows.
For any finite collection of sets A4y, 4,, ..., A,/ let

P,(Ayx Ay x** x A,) =P, (xo€ Ay, ..., X,€A,) 1)

E j ,u(de)J b Lk j' AP(x"_Z,drxn_l).P.(x,,_l,A,,).

Ao An-1

~ An extension theorem of C. Ionescu-Tulcea (see Appendix 3) can be used
to extend this set function to a measure P, on the Borel field o/, gen-
erated by sets of the form A, x A4, x:--x A4, on the space Q, of points
(XrX 10 X35 203) =0,

This probability measure P, describes the relative likelihood of observing
the different possible trajectories = (xg,X;,X;,:..) of the random
system being studied through time. The observation on the system at
time » is given by the n™ coordinate function or random variable
X ,(w) = x, and the random process is written {X,} = {X,(0);n=0,1,...}.
The theorem of Ionescu-Tulcea can be applied to define a one-sided
Markov process {X,(w);n=0,1,...} with transition probability P(-,")
without any additional conditions in the discrete time parameter case
we are now considering. The extension theorem of Kolmogorov (see
Appendix 3) can also be used to define a Markov process with transition
probability function P(-, -)if additional conditions of a mixed topological
and measure theoretic character are imposed on the transition probability
function P(-,-)and an initial or marginal probability measure. However,
the Kolmogorov extension theorem is especially useful in constructing
two-sided Markov processes {X,(w); n=...,—1,0,1,...,} or continuous
time parameter Markov processes and whenever we apply the Kol-
mogorov theorem we shall implicitly assume that the conditions required
for its application are satisfied. The extension theorem of Ionescu-
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Tulcea is not useful in the construction of continuous time parameter
Markov processes.

Higher step transition probablllty functions P,(-, ) can be generated
from the one-step transition probability function P(-,-) by the following
recursive procedure:

P,y (x,4) = [ P(x,d))P,0,4), (n=12,....) %)
2

The relation
P, imx,A) = | P(x,dy) P, (0, 4) (n,m=1.2,...) 3)
(o]

follows from (2) and is commonly called the Chapman-Kolmogorov
equation.

Under certain circumstances, the study of a Markov process with
stationary transition mechanism can be extended backward in time:
This can be done if there exists a sequence of probability measures
Uy n=0, £1,..., on o such that u, = p and

§ a(dx) P(x, A) = p, 11 (A), A€ o.

Equation (1) with g =y, is used to define the probability of sets
A, X% xA,—oo<m<n<oo. The Kolmogorov extension theorem
can then be employed to set up a measure on the space of points
(---, Xx_1,X0,X1,...) =@ ‘describing the history of a system from the
infinite past to the infinite future. A random process described by the
probability measure is now written {X,} ={X (w); n=0, +1,...} with
X, (w)= x, as before. Whether the process is one-sided or two-sided, a
shift transformation © corresponding to a forward time shift can be
introduced. In the one-sided case, @ = (x,, x,,...) and (tw), = X, ,. An
inverse 7! is not always well-defined. In the two-sided case,

.= 5 X i Xd o Xognem. )

with (tw),=x,¢, and the inverse v~ ' is always defined. In both the

one-sided and two-sided situations ./, and Q_ will be used to denote
the Borel field and space of infinite sequences, respectively. If the prob-
ability measure u is invariant with respect to P(-, ")

§ u(dx) P(x,4) = u(A), e
then the process can clearly be extended backward in time using the
Kolmogorov extension theorem. Then for any event Ce.oZ,,

P,(zC)= P,(C).
If a process is two-sided, 7! C is defined and
B (21080
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Such processes are called stationary Markov processes because their
probability structure is invariant with respect to time translation.

The Borel field o/, was constructed so that it is exactly the Borel
field generated by the random variables {X,}. Let 2} be the Borel field
generated by the random variables X;, m<k<n. Notice that .o/, =.o/"
in the case of a one-sided process and o/, = o/, for a two-sided process. |
oy carries the information given by the random variables X,, m<k<n.
Let 4, be the Borel field generated by X, k<m, and %, the Borel field
generated by X,, k>n. 8, and %, are the backward and forward Borel
fields relative to times m and n, respectively. Sometimes we will write
&, in place of <.

Suppose P is some probability measure on the Borel field o/, of
. points w of . Given any event C of 2/, and a sub-Borel field #c </,
let P(C|%#)(w) denote the Radon-Nikodym derivative of the measure
P(C(\B) with respect to P(B), Be %, as measures on %. The derivative is
%-measurable and is called the conditional probability of C given the
Borel field #. Since the first measure is absolutely continuous with
respect to the second,

P(CNB)= gP(ClQ)(w)P(dw), (Be#.)

If # is generated by a family of random variables, then intuitively the
conditioning is with respect to the family of random variables. The
Markov property can now be simply given for such a general process
on the space of sequences Q.. Let F be any event of %, n>m. The
process is Markovian if

P(F|%&,)(@) = P(F|.2)(®)

for any such event. The conditional probability P(F|%,)(w) is -
measurable and so depends only on the past information given at the
last time that a completely specified observation is made on the process.
It can be shown that the Markov property also may be written

P(B|#,)(w) = P(B| &) (®)
for any event Be®,, m<n. The Markov property is independent of
time direction. Under fairly broad conditions the probability of an
event Ay x A, X -*- X A, can be written in terms of an initial distribution
and one-step transition probabilities
P(Xy+ 1 EA|) ()
just as in (1) except that the transition probability function may not be
stationary. In (1) it is rather curious and perhaps unesthetic that even

though the process has stationary transition function in the forward
direction, with time reversed the process may not have a stationary
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transition mechanism. Occasionally we will have to deal with derived
Markov processes not having a stationary transition mechanism. The
probability structure of such a process on sets of the form A4, x A4; x -+ x A,
is then given by a sequence ,P(-,-), k=0,1,..., of one-step transition
_probability functions describing the transition from state x at time k
into set A4 at time k+1 as follows

P,(Ayx Ay X - x A,)= P,(xo€Ap; ..., Xu€Ay) ' )
H J #(dxo)J oP(x()adxﬂ"'As ne2P(Xn22,d%y_ 1) - 1P(Xp—1,An)

P, is then extended to a probability measure on the Borel field </,
generated by sets of the form A, x 4, x -** X 4, just as in the case of a
stationary transition probability function.

A transition probability function P(x,A4) induces an operator T
taking probability measures p on & into probability measures u T

v(4) = (4 T)(4) = [ u(dx) P(x, A) (6)

on /. Thjs is also true for finite measures p, that is, measures such that
u(R) < co. The operation (6) need not be well-defined for o-finite measures
p. The transition probability function also induces an operator taking
bounded functions into bounded functions. We again use the letter T
to denote this operator. T acts on the left as an operator on measures;
on the right it is to be considered as an operator on &/ measurable

ey (TN = [Pdy) £0)- 0
The Holder inequality implies that
(TP [PxA)SOIP = (T |fP)x), (o>p=1.) )

Given a o-finite measure p let [P(dyu) denote the set of o/ measurable
functions f whose p' (1< p < 00) absolute mean with respect to y is finite

J1fGo)IP pdx) < oo .
Inequality (8) implies that if feI’(dv), v=puT, then Tfel’(du) with

NT AN, <N S5 -
Here | f||,,, is the norm given by

1/ l.p = {§17 )P u(dx)} ™.

Further, there is equality in (8) if and only if for almost every x (with
respect to u), f is constant almost everywhere with respect to P(x,").
The construction of Markov processes with continuous time param-
eter proceeds in a similar manner. As before, the state space £ consists
of points x representing a possible observation at any given fixed time 7.
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Here ¢ may be the set of all real numbers or the set of all nonnegative
real numbers. For convenience, we shall consider the set of all nonnega-
tive real numbers. The events (at a fixed time) for which probabilities
are well defined will be elements of a Borel field .o/ of Q. The stable
generating mechanism for the Markov process is now given by a transition
probability function P,(x,A), 0<t<oo, which is ofmeasurable as a
function of x for each set (or event) A€o/ and a probability measure on
o for each x. We now have to assume that P,(x, A) satisfies

_[P,(x,dy)P,(y, A)= P1+1:(xs A),

for #,7>0. This is called the Chapman-Kolmogorov equation as it was in
the discrete time parameter case. It is natural to assume that

1if xed,
Bl o {0 otherwise
and this will be taken for granted. Let u be an initial probability measure
(at time 0) on .2 A Markov process with continuous time parameter
{X(t); 0<t<oo} with initial distribution p and stationary transition
probability function P,(x,A) is constructed very much as it was in the
discrete parameter case. Given any finite collection of events

e Ao, Ay,..., A, e and £,>0

P,(x(0)e Ag, x(11)€ Ay, ..., x(t + - + )€ A,)"
7 I.“(dxo)/! le(xo,dxﬂ"' j Pl,.-l(xn—bdxn—I)R,.(xn-lﬁAn)'

Ao An-1
The Kolmogorov extension theorem can be used under appropriate
conditions on x and PJ(:,-) (see Appendix 3) to extend this set function
to a measure P, on the Borel field generated by sets of the form
{x(0)€ Ao, X(ty)€ Ay, X(t1 4 - +1)E A}, Lysla, s 1, >0

on the space of points (x(f);0<?<o0)=w. Notice that the points of
this space are functions, so that a measure is being constructed on a
function space. Each point w = (x(#);0<?<o0) represents a possible
trajectory (as a function of time) of the system whose probability structure
is described by the Markov process. If there is a family of probability
measures y, on &, — 0o << o0, such that :

pu(A) = [ p(dx) P,_.(x, A)
for all pairs ¢, T with — oo <t <7< 00, then one can construct a Markov
process whose instantaneous distribution at time ¢ is given by p,.
SR £t P(x(to)e Ao -+, (1 e Ay) ‘
= j I‘l"o(de) .‘. Bx—to(xb!dxl) I Pl.._x—t,._z(xn—z’dxn—l) R,.—t,.-l(xn—l’An)
40 Ay 3

An—l
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for any finite collection of sets Ag,..., A,c./ and real numbers
to<t,<--<t, Extend this set function to a measure P on the Borel
field generated by the sets of the form {x(to)eA,, ..., x(t,)€A4,},
to <ty <-*-<t,, on the space of points (x(t); — co <7< o0)=w.-We shall
write the process as {X (1)} = {X(f)(w); — o0 <t< oo} with X(#)(w)=x(?).

2. Markov Chains

The simplest interesting case of a'Markov process is the Markov
chain, a Markov process with a countable number of states that we shall
label by the integers 1, 2, 3,... for convenience. Let the one-step transition
probability from state j to state k be p;,=p{R >0, p;x=1. The (n+1)-

3

step transition probability from state j to state k is given recursively by
pf('f',,“l):ij,;Pf','r)n (n= 1,2,... ) (1)
1

The transition function is sometimes conveniently represented by the
matrix P®™=(p{";ij=1,2,..)=P" n=1,2,..., and the Chapman-
Kolmogorov equation is then simply given by

POt _ PIvE £ PYR™ — pPp™ )
The chain is said to be irreducible if every state can be reached from any
other state with positive probability in a finite number of steps, that is,
given any pair of states j and k there is an integer n = n(j, k) >0 such that

% © ©
P> 0. A state j is recurrent if ) pf}=co and transient if Y P <oo.
n=1 3 n=1

The state j is recurrent (transient) if the mean number of returns to the

state j from the present to the infinite future is infinite (finite). The state

j is periodic with period s if s is the greatest common divisor of the integers

n for which p{">0. In the case of an irreducible chain, if one state is

recurrent (periodic with period p) then all the states are recurrent (perio-

dic with period p). Assume that j is recurrent with k any other state.

Since the chain is irreducible there are integers r, s such that p{}, pi¥;> 0.

Therefore * )

L P> LPRIPTIPik= 0

n=1 m

and k is recurrent. It immediately follows that if one state in an irre-

ducible chain is transient, all the states are transient. Assume that state

j is periodic with period p and that k is any other state. Again let r and s

be integers such that p{),p;>0. Since r+s is divisible by p and
(r+s+m) (r) ,,(m) (s) -

Pj.i 2 Dj kP Pk.j> o)

+5+m) ) m) (r)
pristm < p o Pk

it follows that k is periodic with period p.
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Let f1=P{X,(0)#k 0<m<n, X,(w)=k|Xo(w)=j} be the condi-
tional probability of going from j to k for the first time in precisely n
steps. The conditional probabilities f{% and p{7 satisfy the equation

n—1
pa=ra+ Y e (4)
m=1

Introducing the generating functions

o]

Fj,k(s) = Z f}f‘is",

n=1

@©

G,-_,‘(s)=5)-_k + z py,',)‘s"

n=1

we see that
Gj,j(s) =(1- I'}.j(s))_ ¥ Gi,j(s) = E.j(s) Gj,j(s)a i#j. (5)

The state j is transient if and only if G;;(1)<oo or equivalently Fj;(1)<1.
Let

m = 2 nfii=EAD), (6)

3 1
39?1.(1“_5) G () = #—1 &1

Now
E ()< E ;(1) E,() +(1—F ;1))

If the chain is irreducible and recurrent FK,(1)=1, K ;(1)>0. Then
E.;(1)<E, j(1)F;4(1) which implies that F; x(1)=1. If j is a recurrent
state, the number p; is called the mean recurrence time for the state j.
A recurrent state j is called positive recurrent if p;<oo and null recurrent
if p;=o00. Equation (6) and inequalities (3) imply that an irreducible
chain with one state positive (null) recurrent has all its states positive
(null) recurrent.
If a stationary probability distribution {v;} exists then

U,‘Z”ipij
i

il

which implies that
s0;=(1—15) G;;($) L vi F(5)

by (5). Letting s—1— we have
vj=uquiFij(1)




