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Preface

This book is intended to serve as a text for the course in analysis that is
usually taken by advanced undergraduates or by first-year graduate
students who study mathematics.

The principal difference between the present edition and the first one
(published ten years ago) is that functions of several variables are now
treated much more thoroughly. This change was made in response to
numerous suggestions by users of the book. Chapter 9 now begins with a
discussion of some basic vector-space concepts; derivatives of transforma- |
tions are then defined as linear transformations; the inverse function
theorem and some of its important consequences are formulated and
proved in a determinant-free manner; the transformation properties of
differential forms are established, and the chapter ends with a fairly
general version of Stokes’ theorem—the n-dimensional analogue of the
fundamental theorem of calculus.

In preparation for this, Chapters 2 and 4 contain more material on
Euclidean spaces, and on metric spaces, than they did. This added
generality should cause n6 added difficulty, though. The theorems pre-
sented here are no harder in the present setting than they are on the line
or in the plane.

No major changes were made in the other chapters, but much of the
material was rewritten and many details (it is hoped) were improved.

The first part of Chapter 1, in which the real numbers are constructed
by means of cuts in the rational number system, may be omitted at a
first reading; if this is done, a logical foundation for the rest of the work
can be obtained by taking the Dedekind theorem as a postulate and as a
starting point. Chapters 1 to 7 should be taken up in the order in which
they are presented. The three final chapters, however, are almost
independent of each other.

The number of problems has been increased to about 200. Some of
these involve fairly direct applications of the results obtained in the text,
while others will challenge the ingenuity of the better students. Hints
are supplied with most of the difficult ones.

Walter Rudin
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CHAPTER 1

The Real and Complex
Number Systems

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (e.g., con-
vergence, continuity, differentiation, and integration) must be based on
an accurately defined number concept. We shall not, however, enter
into any discussion of the axioms governing the arithmetic of the integers,
but take the rational number system as our starting point.

We shall assume familiarity with the arithmetic of the rationals (i.e.,
numbers of the form n/m, where n and m are integers, m % 0) and shall
merely list its main features. The sum, difference, product, and quotient
of any two rationals are rational (division by zero being excluded); the
commutative laws

p+g=9g+p PI=49P
the associative laws

P+ +r=p+(@+n) (pg)r = p(gr),

and the distributive law
p+Qr=pr+a

hold; and a relation < is defined which introduces an order into the set
of rationals. The relation < has the property that for any rationals p
and ¢ we have either p = gorp < gorg <p, and it is transitive, that is,
if p<gqgand g <r, thenp <r. Also,p+q>0andpq>0ifp>0
and ¢ > 0.

It is well known that the rational number system is inadequate for
many purposes. For instance, there is no rational p such that p? = 2
(we shall prove this presently). This leads to the introduction of
so-called “irrational numbers,” which are often written in the form of
infinite decimal expansions and are considered to be approximated by

1



2 PRINCIPLES OF MATHEMATICAL ANALYSIS
the corresponding finite decimals. Thus the sequence
1, 1.4, 1.41, 1.414, 1.4142,

“tends to +/2.” But unless the irrational /2 has been clearly defined,
the question mustarise: Just what is it that the above sequence “tends
to” 71 =
The main purpose of this chapter is to give the required definition.
1.1. Example. Let us begin by showing that the equatxon :

(1 ' =2

is not satisfied by any rational p. For, suppose that (1) is satisfied.
Then we can write p = m/n, where m and n are integers, and we can
further choose m and n so that not both are even. Let us assume_ that
this is done. Then (1) implies

2) m? = 2n2,

This shows that m? is even. Hence m is even (if m were odd, m? would
be odd), and so m? is divisible by 4. It follows that the right side of (2)
is divisible by 4, so that n? is even, which implics that n is even.

Thus the assumption that (1) holds leads us to the conclusion that
both m and n are even, contrary to our choice of m and n. Hence (1) is
impossible for rational p.

We now examine the situation a little more closely. Let A4 be the set
of all positive rationals p such that p? < 2, and let B consist of all posi-
tive rationals p suck that p? > 2. We shall show that A contains no
largest number, and B contains no smallest.

More explicitly, for every p in A we can find a rational ¢ in .1 such
that p < ¢, and for every p in B we can find a rational ¢ in B such that
q <p.

Suppose that pisin A. Then p? < 2. Choose a rational h such that
0 < h < 1, and such that

?—p2 A2 03
h<2p_'_1 e

Put g =p + h. Then g > p, and
¢=p'+2p+hh<p+Cp+1Hh<p*+ (2 —p?) =2,

so that g is in A. This proves the first part of our assertion.
Next, suppose that p is in B. Then p? > 2. Put

Pis-Boisged b
2p_+

! For a fuller discussion of this point, we refer to Knopp’s ‘‘Theory and Application
of Infinite Series,”” §1.

9 ot e



Tue ReaL aAnpD ComPLEX NUMBER SYSTEMS 3

Then 0 < ¢ < p, and

: L
¢ = -0 -2 + (Bt

so that ¢ is in B. “

1.2. Remark. The purpose of the above discussion has been to show
that the rational number system has certain gaps, in spite of the fact
that between any two rationals there is another [since p < (p+9/2<q
if p <g]l. We shall now describe a process, due to Dedekind, which
fills these gaps and gives us the real numbers. For reasons of space, some
details will not be carried out in full. For a complete treatment, starting
with the integers, we refer to Landau’s “Ioundations of Analysis,”
which deals with the number system exclusively.

1.3. Notation. If A is any set (whose elements may be numbers, or
any other objects) we write z¢ A4 to denote that z is a member (or an
element) of A. If z is not a member of A, we write z¢ A.

The set which contains no-element will be called the empty set. If a
set has at least one element, it is called nonempty.

)2>p’—(p’—2)=2,

DEDEKIND CUTS

1.4. Definition. A set a of rational numbers is said to be a cut if

(I) « contains at least one rational, but not every rational;

(II) if pe @ and ¢ < p (g rational), then g€ o;

(III) « contains no largest rational.

In this section, we shall always use p, ¢, r, . . . to denote rationals,
while cuts will be denoted by a, 8, v, . . . (with the exception stated in
Definition 1.7).

.1.5. Theorem. Ifpeaand q¢ a, then p < q.

Proof: If pe a and q < p, (II) implies that g € c.

In view of this theorem, the members of a are sometimes called lower
numbers of a, whereas the rationals which are not in « are called upper
numbers of «. Example 1.1 shows that there need not always be a
smallest upper number. However, for certain cuts, smallest upper
numbers do exist:

1.6. Theorem. Let r be rational. Let a be the set consisting of all
rationals p such that p < r. Then « s a cut, and r is the smallest upper
number of a.

Proof: It is clear that a satisfies conditions (I) and (II) of Definition
1.4. As to (III), we need merely note that for any p€ a,

Dok b
2

p <
and therefore (p + 7)/2¢€ a.

L g



4 PRINCIPLES 0¥ MATHEMATICAL ANALYSIS

Since r < r is absurd, we see that r¢ «. Since p < r implies p¢ q,
r is the smallest upper number of a.

1.7. Definition. The cut constructed in Theorem 1.6 is called a
rational cut. When we wish to indicate that a cut « is the rational cut
related to r by the above construction, we write a = r*,

1.8. Definition. Let «, B be cuts. We write o = 8 if p & o implies
p € B, and ¢ € B implies ¢ € «, that is, if the two sets are identical. Other-
wise we write a # S.

Note: The above definition may at first glance seem to be superfluous.
But equality is not always defined as identity. For instance, if p = a/b
and ¢ = ¢/d are rational (q, b, ¢, d being integers), we define p = q to
mean ad = bec, but not necessarily a = c and b = d.

We now introduce an order relation into the set of cuts.

1.9. Definition. Let «, B be cuts. We write < 8 (or 8 > a) if
there is a rational p such that pe g and p¢ a.

a<pB means a=8 or a<3p.
a>f means B < a.

If « > 0* we say that « is positive; if « > 0*, we say that « is non-
negative. Similarly, if @ < 0% « is negative, and nonpositive if a < 0%,

We insert the remark that we shall of course continue to use the
symbol < between rationals, so that the symbol will (temporarily) be
doing double duty. The context will always make it clear, howevecr,
which meaning is to be attached to the symbol.

1.10. Theorem. Leta, Bbecuts. Theneithera = Bora < Borf < a.

Proof: Definitions 1.8 and 1.9 show clearly that if @ = g, neither of the
other two relations can hold. To show that a < 8 and 8 < « are mutu-
ally exclusive, suppose that both these relations hold. Since a < 8,
there is a rational p such that

rep, pia

Since B <>a, there is a rational q such that

gt a, q¢ 8.

By Theorem 1.5, p& 8 and ¢'¢ B implies p < g, whereas ge a and p¢ a
implies ¢ < p. This is a contradiction, since p < g and ¢ < p is impos-
sible for rationals.

So far we have proved that at most one of the three relations can hold.
Now suppose @ # 8. Then the two sets are not identical; that is, either
there is a rational p in « but not in 8, in which case 8 < a, or there is a
rational ¢ in B but not in «, in which case a < B.
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1.11. Theorem. Let a, B, ybecuts. If a <§B and B < v, then a < 7.
Proof: Since a < B, there is a rational p such that

PEB, p¥a

Since 8 < ¥, there is a rational ¢ such that

qge, q%B.

Now, pe 8 and g¢ B implies p < ¢; and this, together with p ¢ «, implies
g¢ a. Thus

gev, g¥o
This means a < v.

The above two theorems show that the relation < defined in Definition
1.9 does indeed have the properties which one usually associates with
the concept of inequality.

We now proceed to construct an arithmetic in the set of cuts.

1.12. Theorem. Let a, B be cuts. Let v be the set of all rationals r such
thatr = p + g, where pe a and g€ B. Then v 18 a cut.

Proof: We shall show that vy satisfies the three conditions of Definition
1.4.

(I) Clearly v is not empty. Take s¢ a, t¢ B, s and ¢ rational. Then
s+it>p+gforalpea geB, so that s + t¢y. Hence vy does not
contain every rational.

(II) Supposerey, s <7, 8 rational. Then r = p + ¢ for some p e a,
geB. Choose a rational ¢ such that s = ¢+ ¢. Then ¢ < p; hence
te a; hence se .

(I1I) Suppose rey. Thenr =p +g¢ for some pe a, g¢ 8. There is
a rational s > p such that sea. Hence s+ gevy and s +¢g>r, 80
that r is not the largest rational in 7.

1.13. Definition. The cut v constructed in Theorem 1.12 is denoted
by a + B and is called the sum of « and B.

(The remark made after Definition 1.9 applies to the symbol + as
well.)

1.14. Theorem. Let a, B, v be cuts. Then

(@ a+B=8+a;

®) (a+ B) +v = a+ (B+ ), so that the parentheses may be omitted
without ambiguity;

(c) a4+ 0* = a.

Proof: To construct a + 8, we take the set of all rationals of the form
p+ q(pea,gep). Toconstruct + & we take ¢ + pinplaceof p + ¢.
By the commutative law for addition of rationals, a + B8 and B + « are
identical cuts, which proves (a). :

Similarly, the associative law for addition of rationals implies (b).
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To prove (c), let re a + 0*. Then r = p + q for sone pea, ge0’
(that is, ¢ < 0). Hence p + ¢ < p, so that p + gea,andrea.

Next, let rea. Choose s > r, s rational, such that sea. Pu
g=r—38 Thenqg<0,ge0* andr = s+ g, so that re a + 0*,

Thus the cuts « + 0* and a are identical.

1.16. Theorem. Let a be a cut, and let r > 0 be a given rational. Then
there are rationals p, q such that pe a, q¢ @, g is not the smallest upper
number of a, and g — p = r.

Proof: Choose a rational sea. Forn =0,1,2, . . . , put 8, = 8 + nr.
Then there is a unique integer m such that s.e« and Smyrfa I
8m+1 18 not the smallest upper number of a, take p = Smy § = 8my1.

If 8m41 is the smallest upper number of a, take

r )
P=8m+§’ q=8..+1+§-

1.16. Theorem. Let a be a cut. Then there is one and only one cut
B such that o + B = 0*,

Proof: We first prove uniqueness. Ifa + 8; = a + 8; = 0*, Theorem
1.14 shows that

Br=0*+Bs=(a+B1)+ 2= (a+ Bs) + f1 = 0* + B, = ..

To prove existence, let 8 be the set of all rationals p such that —pisan
upper number-of @, but not the smallest upper number. We have to
verify that this set 8 satisfies the three conditions of Definition 1.4.

(I) Clear.

(II) If pep and ¢ < p (g rational), then —p¢ a, and —q > —p, S0
that —g is an upper number of «, but not the smallest. Hence qgep.

(III) If p € B, —p is an upper number of a, but not the smallest, so that
there is a rational ¢ such that —g < —p, and —g¢a. Put

,=PT+9.

Then —g < —r < —p, so that —r is an upper number of a, but not the
smallest. Hence we have found a rational » > p such that 7 3.
Having shown that 8 is a cut, we now have to verify that « + 8 = 0*.
Suppose pea + B. Then p = g+ r, for some qea, reB. Hence
—r¢a, —r>q,q+r <0, and pe0*
Suppose p£0*. Then p < 0. By Theorem 1.15, there are rationals
gt a, ¢ a (and such that r is not the smallest upper number of ) such
that r — ¢ = —p. Since —r¢ B, we have

‘ p=q—r=q+ (—-r)ea+ B
This completes the proof.
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1.17. Definition. The cut 8 constructed in Theorem 1.16 is denoted
by —a.

1.18. Theorem. For any cuts a, B,y with < y we havea + B < a + 7.
In particular (taking B = 0*), we have a + v > 0* if a > 0* and v > 0*.

Proof: By Definitions 1.9 and 1.13, a + 8 < a + v. If

K gy,
then

ﬁ=0*+ﬂ=(—a)+(a+ﬁ)=(-a)+(a+7)=0*+7='Y,

by Theorem 1.14.

1.19. Theorem. Let o, 8 be cuts. Then there is one and only one cut v
such that « + v = B.

Proof: That there is at most one such y follows from the fact that
71 # 72 implies a + v; # a + v2 (Theorem 1.18).

Put ¥y = 8 + (—a). By Theorem 1.14, we have then

aty=a+ [+ (-a)=a+[(—a)+ 8]l =[a+ (—a)] +8
=0*4+8=8

1.20. Definition. The cut y constructed in Theorem 1.19 is denoted
by 8 — a. That is, we write 8 — a in place of 8 + (—a).

1.21. Remark. We do not require any group theory in this book.
However, those readers who are familiar with the group concept may
have noticed that Theorems 1.12, 1.14, and 1.16 can be summarized by
saying that the set of cuts is a commutative group with respect to addition
as defined by Definition 1.13. We now define multiplication, and show
that a field is obtained.

Having discussed addition and subtraction of cuts in considerable
detail, we shall deal briefly, and without proofs, with multiplication and
division. The proofs of the theorems we shall state are quite analogous
to those concerning addition and subtraction, except that it is sometimes

" necessary to consider several cases, depending on the signs of the factors
involved.

1.22. Theorem. Let o, B be cuts such that a > 0* B>0* Let v
consist of all negative rationals, plus all rationals r such that r = pq, where
pea, qePB, p>0,9>0. Then v isa cul.

1.23. Definition. The cut constructed in Theorem 1.22 is denoted by
af and is called the product of & and 8.

1.24. Definition. With every cut a we associate a cut |a|, which we
call the absolute value of «, as follows:

o= a if a > 0%,
e if a < 0*,

Clearly, || > 0* for all a, and |a] = 0* only if & = 0%,
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We can now complete the definition of multiplication.
1.26. Definition. Let a, 8 be cuts. We define

—(of 8)  if @ <0% 8 20%
aff = —(Ial Iﬁl) ifa 2 0*’ B < 0*7

e |8] if « <0% 8 <0*

Note that the product |a| |8| has already been defined by Definition 1.23,
since |a] > 0%, 8] 2 0%,

1.26. Theorem. For any culs o, B, ¥ we have

(@) aB = Ba,

(®) (aB)y = a(Bv),

(©) a(B+7) = aB + av,

(d) a0* = 0%,
(e) aB = 0* only if a = 0* or B = 0%,
() al* = a

(9) If 0* < a < B, and v > 0%, then ay < Bv.

1.27. Theorem. If a # 0*, then for every cut B there is one and only
one cut v (which we denote by B/a) such that ay = B.

We conclude this section with three theorems concerning rational cuts.

1.28. Theorem. For any rationals p and g, we have

(@ p*+¢* =@+ 9%

(®) p*¢* = (p0)*,

(c) p* < g*ifand onlyif p < ¢.

Proof: If rep* + g* then r = s+, where s <p, t <g, 8o that
r<p+gq Hencere(»+ @*

Ifre(p+ q)* thenr < p+ ¢ Put

h
R e BT gk R e T iR ek el
Then s¢ p* teg* and r = s + ¢, so that re p* + ¢*.
This proves (a). The proof of (b) is similar.
If p < g, then p e g* but pg p*, so that p* < ¢*.
If p* < ¢*, there is a rational r such that re¢*, ¢ p*. Hence

p<r<g

so that p < ¢q.

1.29. Theorem. If a, B are culs, and a < B, then there is a rational
cut r* such that o« < r* < B.

Proof: If & < B, there is a rational p such that peg, p¥ a. Choose
r > p such that re 8.

Since r & B and r ¢ r*, we see that r* < B.

Since p & r* and p ¢ a, we see that « < r*.
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1.30. Theorem. For any cut o, p € a if and only if p* < a.
Proof: For any rational p, p¢ p*. Hence p* < aif pe a. Conversely,
if p* < @, there is a rational ¢ such that ¢ « and g¢ p*. Thus ¢ 2 p,
which, together with ¢ &€ &, implies p € a.

REAL NUMBERS

Let us now summarize the preceding section. We considered certain
sets of rationals which we called cuts. An order relation and two opera-
tions, called addition and multiplication, were defined, and we proved
that the resulting arithmetic of cuts obeys the same laws as the arithmetic
of the rationals. In other words, the set of all cuts was made into an
ordered field.

A special class of cuts, the so-called “rational cuts,” was singled out for
special attention, and we found that the replacement of the rational
numbers 7 by the corresponding cuts r* preserves sums, products, and
order (Theorem 1.28). This fact may be expressed by saying that the
ordered field of all rational numbers is isomorphic to the ordered field of all
rational cuts, and it enables us to identify the rational cut r* with the
rational number r. Of course, r* is by no means the same as r, but the
properties we are concerned with (arithmetic and order) are the same in
the two fields.

We now define what we mean by a real number.

1.31. Definition. Cuts will from now on be called real numbers.
Rational cuts will be identified with rational numbers (and will be called
rational numbers). All other cuts will be called irrational numbers.

We thus obtain the rationals as a subset of the real number system.
Theorem 1.29 shows that between any two reals there is a rational, and
Theorem 1.30 shows that every real number « is the set of all rationals
p such that p < a.

The following theorem states a very fundamental property of the real
number system. :

1.32. Theorem (Dedekind). Let A and B be sets of real numbers
such that

(a) every real numter is either in A or in B;

(b) no real number is in A and in B;

(c) meither A nor B is empty;

(d) if ae A, and B € B, then a < B.

Then there is one (and only one) real number v such that o < v for all
at A, and vy < B for all Be B.

Before giving the proof, let us state the following Corollary.

Corollary. Under the hypotheses of Theorem 1.32, either A contains
a largest number or B contains a smallest.



10 PRINCIPLES OF MATHEMATICAL ANALYSIS

For if y& A, v is the largest number in 4; if v & B, v is the smallest
number in B; and by (a) one of these two cases must occur, while (b)
implies that both cannot occur together.

It is the existence of v (uniqueness is trivial) which is the important
feature of the theorem and which shows that the gaps which we found in
the rational number system (compare Example 1.1) are now filled.
Moreover, if we tried to repeat the process which led us from the rationals
to the reals, by constructing cuts (as in Definition 1.4) whose members are
real numbers, every cut would have a smallest upper number, we could
immediately identify every cut with its smallest upper number, and
nothing new would be obtained.

For this reason, Theorem 1.32 is sometimes called the completeness
theorem for the real numbers.

Proof of Theorem 1.32: Suppose there are two numbers, y; and v,, for
which the conclusion holds, and y; < 7s. Choose vz such that y; < vz <
vy (this is possible, by Theorem 1.29). Then v; < v: implies ys¢ 4,
whereas y1 < v; implies y3&¢ B. This contradicts (b). There is thus at
most one number vy with the desired properties.

We let v be the set of all rational p such that p &« for some at A.
We have to verify that v satisfies the conditions of Definition 1.4.

(I) Since A is not empty, neither is . If 3€¢ B and ¢¢ B, then ¢¢ «
for any ae A (since @ < B8); hence ¢ ¢ 7.

(II) If pey and ¢ < p, then p e « for some a € 4; hence g € a; hence
qe .

(III) If p e, then p e a for some a e A; hence there exists ¢ > p such
that ¢ & ; hence g€ 7.

Thus v is a real number.

It is clear that « < v for all ae A. If there were some B& B for
which 8 < v, then there would be a rational p such that pe v, and p ¢ 8;
but if p € v, then p € « for some a € 4, and this implies that 8 < «, a con-
tradiction to (d). Thus v < g for all B¢ B, and the proof is complete.

We shall now discard some of the notational conventions used so far:
The letters p, ¢, r, . . . will no longer be reserved for rationals, and
a, B, v, . . . will also be available for general use.

1.33. Definition. Let E be a set of real numbers. If there is a number
y such that x < y for all z ¢ E, we say that E is bounded above, and call
y an upper bound of E.

Lower bounds are defined in the same way. If E is bounded above and
below, then X is said to be bounded.

1.34. Definition. Let E be bounded above. Suppose y has the
following properties:

(a) y is an upper bound of E;

(b) if z < y, then z is not an upper bound of E.



