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Representations of Lie Algebras

This bold and refreshing approach to Lie algebras assumes only modest prerequisites
(linear algebra up to the Jordan canonical form and a basic familiarity with groups
and rings), yet it reaches a major result in representation theory: the highest-weight
classification of irreducible modules of the general linear Lie algebra. The author’s
exposition is focused on this goal rather than on aiming at the widest generality,
and emphasis is placed on explicit calculations with bases and matrices. The book
begins with a motivating chapter explaining the context and relevance of Lie algebras
and their representations and concludes with a guide to further reading. Numerous
examples and exercises with full solutions are included.

Based on the author’s own introductory course on Lie algebras, this book has been
thoroughly road-tested by advanced undergraduate and beginning graduate students
and is also suited to individual readers wanting an introduction to this important area
of mathematics.
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Preface

The aim of this book

Why another introduction to Lie algebras? The subject of this book is one of the
areas of algebra that has been most written about. The basic theory was unearthed
more than a century ago and has been polished in a long chain of textbooks to a sheen
of classical perfection. Experts’ shelves are graced by the three volumes of Bourbaki
[1]; for students with the right background and motivation to learn from them, the
expositions in the books by Humphreys [10], Fulton and Harris [6], and Carter [2]
could hardly be bettered; and there is a recent undergraduate-level introduction by
Erdmann and Wildon [4]. So where is the need for this book?

The answer comes from my own experience in teaching courses on Lie algebras to
Australian honours-level undergraduates (see the Acknowledgements section). Such
courses typically consist of 24 one-hour lectures. At my own university the algebraic
background knowledge of the students would be: linear algebra up to the Jordan
canonical form, the basic theory of groups and rings, the rudiments of group repre-
sentation theory, and a little multilinear algebra in the context of differential forms.
From that starting point, I have found it difficult to reach any peak of the theory
by following the conventional route. My definition of a peak includes the classifica-
tion of simple Lie algebras, the highest-weight classification of their modules, and
the combinatorics of characters, tensor products, and crystal bases; by ‘the conven-
tional route’ I mean the path signposted by the theorems of Engel and Lie (about
solvability), Cartan (about the Killing form), Weyl (about complete reducibility),
and Serre, as in the book by Humphreys [10]. Following that path without skipping
proofs always seemed to require more than 24 lectures.

The solution adopted in this book is drastic. I have abandoned the wider class of
simple Lie algebras, focusing instead on the general linear Lie algebra gl , which is
almost, but not quite, simple. I have jettisoned all five of the aforementioned theo-
rems, in favour of arguments specific to gl,,, especially the use of explicit Casimir
operators. Although these omissions may shock the experts, I have found this to be
an approach that is more accessible and yet still reaches one peak: the classification
of gl,,-modules by their highest weights.

vii



viii Preface

I'have started the journey with a motivatory chapter, which gives some explanation
of why algebraists care about this classification and also introduces some necessary
multilinear algebra. Chapters 2 to 4 cover the basic definitions of Lie algebras, homo-
morphisms and isomorphisms, subalgebras, ideals, quotients, modules, irreducibility
and complete reducibility. In a lecture course, the material in these first four chapters
would typically take about 12 hours; so the elegant sls theory in Chapter 5 is reached
relatively early. Then in Chapter 6 I return to the theory of modules, covering tensor
products, bilinear forms, Schur’s lemma, and Casimir operators.

In Chapter 7 these tools are used to develop the highest-weight theory. My hope
is that students who reach the end of Chapter 7 will be inspired to progress to more
comprehensive books, and Chapter 8 is intended as a map of what lies ahead.

Acknowledgements
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Pramod Achar, Wai Ling Yee, Cheryl Praeger, and the anonymous reviewers for their
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Notational conventions

To simplify matters, we make a standing convention:

All vector spaces are over C and finite-dimensional.

The finite-dimensionality assumption allows the explicit calculations with bases and
matrices that are a feature of the book. The n x n identity matrix is written 1,,, and
the identity transformation of a vector space V' is written 1y,. The elements of the
vector space C" are always thought of as column vectors; linear transformations of
this particular vector space are tacitly identified with n x n matrices (multiplying
on the left of the vectors). The bases of vector spaces are considered to be ordered
sets and hence are written without set braces. The span of the elements vy, ..., v is
written C{v1, ..., vx}. The term ‘subspace’ always means ‘sub-vector-space’. If W
and W' are subspaces of a larger vector space V' then W & W’ denotes their sum,
and it is implied that W MW’ = {0} (an ‘internal direct sum’); if W and W' are not
subspaces of a larger vector space V' then W & W' means the ‘external direct sum’
{(w,w") |w € W,w' € W'}. The same principles apply to direct sums with more
than two summands.

On its rare appearances, the square root of —1 is written i to distinguish it from the
italic letter 7, which is widely used for other purposes. The group of nonzero complex
numbers is written C*. The set of nonnegative integers is written N. Other notation
will be explained as it is needed.
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CHAPTER |
Motivation: representations of Lie groups

Sophus Lie was a Norwegian mathematician who lived from 1842 to 1899.
Essentially single-handedly he discovered two fundamental classes of objects in
modern mathematics, which now bear his name: Lie groups and Lie algebras. More
importantly, he built a bridge between them; this is remarkable, because Lie groups
seem to be part of differential geometry (in today’s language) while Lie algebras
seem to be purely algebraic. In this chapter we will discuss a small part of Lie’s
discovery.

1.1 Homomorphisms of general linear groups

Typically, Lie groups are infinite groups whose elements are invertible matrices with
real or complex entries. So they are subgroups of the general linear group

GL, = {g € Mat,, | det(g) # 0},

where Mat,, = Mat,,(C) denotes the set of nxn complex matrices for some positive
integer n. Lie was interested in such groups because they give the symmetries of
differential equations, but they have since found many other applications in areas
such as differential geometry and harmonic analysis.

One of the most important algebraic problems concerning Lie groups is to clas-
sify a suitable class of matrix representations of a given Lie group G, i.e. group
homomorphisms G — G'L,, for various m. For the purposes of motivation, we con-
centrate on the case where G is the full general linear group G'L,,; thus the problem
can be stated (vaguely) as follows.

Problem 1.1.1. Describe all group homomorphisms ¢ : GL,, — GL,,.
By definition, such a homomorphism is a map ¢ : GL,, — Mat,, such that:
(1,) = 1, (1.1.1)
where 1,, denotes the n x n identity matrix, and

®(gh) = ®(g)®(h) forall g,h € GL,. (1.1.2)



2 Motivation: representations of Lie groups

(The case h = g~ of (1.1.2), combined with (1.1.1), forces ®(g) to be invertible.)
Such a map @ is a collection of m? functions ®;; : GL,, — C, where ®;;(g) is the
(i, 7) entry of the matrix ®(g). Each function ®; is in effect a function of n? vari-
ables, the entries of the input matrix g (the given domain consists of just the invertible
matrices, so the function may or may not be defined for those choices of variables
that give a zero determinant). So (1.1.1) and (1.1.2) amount to a complicated sys-
tem of functional equations. To frame Problem 1.1.1 rigorously, we would have to
specify what kinds of function are allowed as solutions — for example, continuous,
differentiable, rational, or polynomial — but we will leave this undetermined for now
and see what happens in some examples.

Example 1.1.2. The determinant det : GL,, — C* is one such homomorphism, if
we make the obvious identification of C* with GG L. The determinant of a matrix is
clearly a polynomial function of the entries. |

Example 1.1.3. The transpose map GL,, — GL, : g — g% is not an example
because it is an anti-automorphism rather than an automorphism: (gh)* equals h*g*
and doesn’t usually equal g*A*. But this means that the map GL,, — GL,, : g —
(¢*)~" is an example. The entries of (g*) ! are rational functions of the entries of g:
they are quotients of various (n—1) x (n—1) minors and the determinant. Therefore
these functions are not defined on matrices with zero determinant. |

Example 1.1.4. A map that is easily seen to satisfy (1.1.1) and (1.1.2) is the
‘duplication’ map

a b 0 0

, b - d 0 0
GL2—>GL4<Z d)+—> 6 0 a b
0 0 ¢ d

To produce something less trivial-looking, we could replace either copy of (¢ %) with
its conjugate X (¢ %)X 1, for some fixed X € GLy, or indeed we could conjugate
the whole output matrix by some fixed Y € G L4. This is a superficial change that we
could account for by introducing a suitable equivalence relation into the statement of
Problem 1.1.1. Note that in this example the entries of the output matrix are linear
functions of the entries of the input matrix. |

Example 1.1.5. More interesting is the map W : GL, — G L3 defined by

0 b a? 2ab  b?
o (CL d) = |ac ad-+be bd
c? 2ced  d?
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where the entries of the output are homogeneous polynomials of degree 2 in the

entries of the input. It is clear that property (1.1.1) is satisfied. The proof of property
(1.1.2) is as follows:

a b e f a? 2ab b? e? 2ef f2
\I/< )\Il( >= ac ad+bec bd eg eh+ fg fh

¢ o g h c? 2¢ed  d? g2 2gh h?
(ae + bg)? 2(ae + bg)(af + bh) (af + bh)?
= | (ae + bg)(ce + dg) g‘_l(ea'; igzglc){(t ihcgg) (af + bh)(cf + dh)
(ce +dg)? 2(ce + dg)(cf + dh) (cf +dh)?

()G )

At the moment this seems like an accident, and it is not clear how to find other such
solutions of (1.1.1) and (1.1.2). |

1.2 Multilinear algebra

The right context for explaining the above examples of homomorphisms, and
for finding new examples, is the theory of multilinear algebra. If V' is an n-
dimensional vector space with chosen basis vy, ..., v, then the elements of GL,,
correspond bijectively to invertible linear transformations of V: a matrix (a;;) in
G L, corresponds to the unique linear map 7 : V' — V such that

T(v;) = Zaijm for all j. (1.2.1)

i=1

If we have a way of constructing from V' a new vector space W with basis
wy, . .., Wn, and if this construction is sufficiently ‘natural’, then each linear trans-
formation of V' should induce a linear transformation of W and the resulting map
® : GL,, — GL,, of matrices should satisfy (1.1.1) and (1.1.2). This is one reason
to be interested in Problem 1.1.1: the homomorphisms between general linear groups
tell us something about natural constructions of vector spaces.

Example 1.2.1. A very important example of such a homomorphism occurs when
W is the dual space V*, consisting of all linear functions f : V' — C. This is
also n-dimensional: it has a basis v], ..., v, where v is the unique linear function
satisfying

1 ifr=14,
*(0:) = 8:s = 1.2.2
vi (vs) " {0 otherwise. ¢ )
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In other words, v} is the function whose value on ayv; + --- + a,v, € V is the
coefficient a;. A general linear function f : V' — C can be written as f(v)v] +
-+« + f(vp)vy. If 7 is an invertible linear transformation of V' then 7 induces in a
natural way an invertible linear transformation 7* of V*, defined by

(f)(w) = f(r~'(v)) forallueV, feV" (12.3)

(The transformation 7~ ! on the right-hand side does indeed give the function that one
would naturally expect, for the same reason that, in calculus, translating the graph of
y = f(x) one unit to the right gives the graph of y = f(x — 1).) To find the matrix
of 7* relative to the basis v}, ..., v}, observe that its (j,7) entry is the coefficient
of v} in 7% (v;); this is the same as 7 (v])(v;) = v (77 (v;)), the coefficient of v;
in 77! (v;), i.e. the (i, ;) entry of the matrix of 7~! relative to vy, ..., v,. So, the
map of matrices corresponding to 7 +— 7% is the inverse transpose map considered
in Example 1.1.3. |

Example 1.2.2. Take W = V@&V = {(v,2) |v,v" € V'}. Any linear transformation
7 of V induces a linear transformation 7 & 7 of V' & V, defined by

(r@e7)(v,v') = (1(v),7(v")) forallv,v' €V. (1.2.4)
The most obvious basis for V' & V' consists of
(v1,0), (v2,0), ..., (vy,0),(0,21), (0,02), ..., (0,v,).

Relative to this basis, the matrix corresponding to 7 7 is exactly the block-diagonal
duplication of the matrix of 7 seen in Example 1.1.4; the conjugated versions
mentioned there would arise if one used other bases of V & V. |

To explain Examples 1.1.2 and 1.1.5 similarly, we need the concept of the tensor
product, which for finite-dimensional vector spaces can be explained fairly simply.
Given two vector spaces V' and W with respective bases vy, ..., v, and wy, ..., Wy,
the tensor product V' @ W is a vector space with basis v; @ w; for all 7, j with
1 <i<mn,1<j < m. Onecanregard the elements v; © w; merely as symbols and
V @ W as the space of formal linear combinations of them. Note that the dimension
of V@ W is (dim V')(dim W), in contrast with that of the direct sum V & W, which
is dim V' + dim W. For arbitrary elements v € V and w € W, we define the pure
tensor v @ w € V @ W by the following rule:

itv=ayvy4+--++ayv, and w=byw;+-+++ bpwm
n m
1.2.5
then » QW = Z Zaibj(vi ® wj). ( )
i=1 j=1
Note that if v happens to equal v; and w happens to equal w; then v @ w does indeed
equal the basis element v; @ wj;, so our notation is consistent. Having made this
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definition, one can easily show that the tensor product does not depend on the chosen
bases of V' and W: for any other bases v},...,v) and w},...,w/, the elements
v; ® w; form another, equally good, basis of V' @ W. It is important to bear in
mind that a general element of V' ® W is not a pure tensor: it is, of course, a linear
combination of the basis elements v; @ w; but the coefficients cannot usually be
written in the form a;b;, as in (1.2.5).

So, we have another way to construct a new vector space from a vector space V':
we can consider its tensor square V®? = V ® V. Any linear transformation 7 of V'
induces a linear transformation 7 @ 7 of V' ® V/, defined on the basis elements by
(T ®7)(v; ® v;) = 7(v;) ® 7(v;). It is easy to see that in fact

(rTe7)(vev)=7l)®7r() foranywv,v' €V. (1.2.6)

Example 1.2.3. Suppose that V' is two-dimensional, with basis vy, vs. If the linear
transformation 7 : V' — V has matrix (¢ 2) relative to this basis then, for instance,

(T®7) (1 @v1) =7(v1) ® 7(v1)
= (avy + cva) ® (avy + cvz)
= a2(*(11 ®v1) + ac(vy @ v2) + ac(ve @ vy) + c2(v2 ® va).

This calculation gives the first column of the matrix of 7 @ 7 relative to the basis
v ® U1,V ® Vo, Vg @ v, V2 @ vo. The whole matrix is

a? ab ab b?
ac ad be bd
ac be ad bd
¢ ed cd d?

The map sending (¢ %) to this matrix is a homomorphism from GL; to G'L4. To
check (1.1.2) there is no need to make explicit matrix multiplications as in Example
1.1.5: the relation (1.1.2) follows from the fact that, for any linear transformations
7,7 of V,

(toT)@(ror)=(r@7)o(F ®T), (1.2.7)

which in turn follows because the two sides take the same values when evaluated on
the basis elements. |

As can be seen in Example 1.2.3, there are two subspaces of V' @ V that are
guaranteed to be preserved by all linear transformations of the form 7 & 7: these are
the space of symmetric tensors, Sym?(V'), consisting of elements that are invariant
under the interchange map v; ® v; — v; ® v;, and the space of alternating tensors,
Alt?(V), consisting of elements that change sign under this interchange map. By
restricting 7 @ 7 to these subspaces we obtain further homomorphisms of the type
referred to in Problem 1.1.1.
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Example 1.2.4. Continuing with V' two-dimensional, as in Example 1.2.3, Sym2 (V)

is three-dimensional with basis v; ® v1,v1 ® Vs + v2 ® V1, Vs @ vo. The resulting

homomorphism is exactly the map ¥ : GLy — G L3 of Example 1.1.5. By contrast,

Alt?(V) is one-dimensional, spanned by v; @ vs — v, @ vy. If 7 : V — V has matrix
@ ? ) then

(T®7)(v1 ®va —v2 ® v1) = (avy + cv2) ® (buy + dvs)
— (bvy + dv) ® (avy + cvs)
= (ad — be)(v1 ® va — va @ v1).
So the resulting homomorphism is the determinant det : GLy; — GLj, as in
Example 1.1.2. |

In general, if V' has a basis vq, ..., v, then an element of V ® V lies in Sme(V)
if and only if the coefficient of v; ® v; equals the coefficient of »; ® v; for all 4, j.
Hence Sym? (V') has a basis consisting of the following elements:

v;Qw; forl<i<n and v, ®@v; +v; v; forl <i<j<n.

An element of V @ V lies in Alt?(V) if and only if the coefficient of v; ® v, is zero
for every i and the coefficient of v; @ v; is the negative of the coefficient of v; ® v;
for all i # j. Hence Alt%( V') has a basis consisting of the elements

v; ®U; — U QU; forl1 <i<j<n.
Clearly we have a direct sum decomposition,
V ®V =Sym*(V) @ Alt*(V), (1.2.8)

and the dimensions of Sym?*(V') and Alt*(V) are ("} ') and (}}) respectively.

As well as tensor squares, one can define higher tensor powers in an entirely anal-
ogous way: VO3 =V @V eV, V¥ =V VeV ®V,andso forth. If V has a
basis v1, ..., v, then the k-fold tensor power V®* has a basis consisting of the pure
tensors:

Vi, @V, ® - @uy,. forl <idg,... i <.

Sodim V®* = n*_ (By convention, V®! is V itself.) The space of symmetric tensors
Sym* (V) consists of those elements of V®* that are fixed under any permutation
of the tensor factors. In other words, the coefficients of v;, @ v;, ® .-+ ® v;, and

v, ®vj, ® -+ @ vj, have to be the same whenever ji, ..., ji can be obtained by
rearranging i, . . . ,ix. So Sym® (V') has a basis consisting of all the elements
t(k‘l ,,,,, kn) = Z Vg, - Vsp s
L<8 1oy 8 SN
ki of the 5;

equal 7



