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Translator’s Note

According to the wish of Professor Gel'fand, this translation has been
compared with the 1964 German translation,! and all improvements and
omissions contained in the latter were taken over here. Certain minor
corrections were made without being mentioned and a few notes were
added (which are identified as translator’s notes), especially in the last
chapter, which is closely related to Chapter 1 in Volume 4 of this series.

No serious attempt has been made to coordinate the terminology with
that used in previously published volumes, partly because the present
translator does not entirely agree with it (e.g. the use of conjugate space
for what is called here dual space, or function of bounded support, for
what is more frequently called function of compact support). On the
other hand, there are no radical departures from the notation and termi-
nology of the authors—in particular, no attempt has been made to
“modernize”™ it.2

The theory of partial differential equations, and of generalized eigen-
function expansions has made tremendous progress in the past few years.
Not being a specialist in these fields the translator has made no attempt
to update the literature on the subject (except for a few obvious references).

It was the express wish of Professor Gel'fand to refer the reader to the
“excellent book of Hormander” for some of the more recent develop-
ments.* This book is indeed the most valuable contribution to the
literature on partial differential equations and should be read by any
serious student of the subject.

Finally, I would like to thank Professor Gel'fand for supplying me
with a copy of the German edition of this book and other literature
which was useful in the translation.

October, 1967 MEINHARD E. MAYER

! “Verallgemeinerte Funktionen (Distributionen). Volume IIl—Einige Fragen zur
Theorie der Differentiaigleichungen.” VEB-Deutscher Verlag der Wissenschaften,
Berlin, 1964.

? As was done in the recently published French translation, Marh. Rev. 1080
(1966), rev. Nr. 6001.

* L. Hormander, “Linear Partial Differential Operators.” Springer-Verlag, Berlin-
Heidelberg-Gottingen and Academic Press, New York, 1963.
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Preface to the Russian Edition

In the present volume, the third in the series “Generalized Functions,”
the apparatus of generalized functions is applied to the investigation of
the following problems of the theory of partial differential equations: the
problems of determining uniqueness and correctness classes for solutions
of the Cauchy problem for systems with constant (or only time-dependent)
coefficients and the problem of eigenfunction expansions for self-adjoint
differential operators.

In subsequent volumes, the authors intend to discuss boundary value
problems for elliptic equations and the Cauchy problem for equations
with variable coefficients and for quasilinear equations, as well as problems
related to complex extensions of all independent variables.

The authors use this occasion to thank the participants of the Seminar
on Generalized Functions and Partial Differential Equations at Moscow
State University, where various sections of this volume were repeatedly
discussed. In particular, they are grateful to V. M. Borok, A. G.
Kostyuchenko, Ya. I. Zhitomirskii and G. N. Zolotarev. The authors
would also like to thank I. I. Shulishova for setting up detailed indexes
for the first three volumes and to M. S. Agranovich, who has carefully
edited the whole text and whose criticism has contributed considerable
improvements.

Moscow, 1958 [. M. GEL’FAND
G. E. SHIiLov
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CHAPTER |

SPACES OF TYPE W

This chapter contains an exposition of the theory of test function
spaces of type W, which together with the spaces of type S (Volume 2,
Chapter IV) will be used in Chapters II and III of the present volume
for the study of Cauchy’s problem. The results contained in the present
chapter have been summarized without proofs in Appendix2 to
Chapter 1V of Volume 2.

The spaces of type W are analogous to spaces of type S, corresponding
to values « << | and B < 1, but due to the use of arbitrary convex
functions in place of powers, these spaces are capable of a more
precise description of the peculiarities of growth (or decrease) at infinity.

In the same manner as for spaces of type S, for simplicity we shall
first treat the case of one independent variable. The modifications which
are necessitated by considering several independent variables are
indicated in Section 4.

1. Definitions
1.1. The Spaces W,

Let u(¢) (0 < ¢ < o) denote a continuous increasing function, such
that u(0) = 0, pu(w) = 0. We define for x > 0

M) = [ ) e (1)

The function M(x) is an increasing convex continuous function, with
M(0) = 0, M(o0) = co0. Since u(€) increases with the increase of £,
so does its average ordinate x~'M(x), so that for arbitrary positive x,
and x,, we have

1
o M(x;) < M(x; + x5),
1

x; + x,
X1 T+ Xg

1

1
% M(x,) < M(xy + x,).
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Multiplying the first inequality by x,, the second by x,, and adding,
we obtain the fundamental (convexity) inequality

M(xy) + M(x;) < M(x, + %) (2)
In particular, for any x > 0
2M(x) < M(2x). 3)

Further, we define the function M(x) for negative x by means of the
equality

M(— x) = M(x).

Note that since the derivative u(x) of the function M(x) is unbounded
for x — + o, the function M(x) itself will grow faster than any linear
function as | x | — 0.

We shall denote by W,, the set of all infinitely differentiable functions
p(x) (—w0 < x < o0) satisfying the inequalities

|¢(q)(x) I < qu—M(az) (4)

with constants C, and @ which may depend on the function ¢.

Since the function M(x) increases faster than any linear function, the
function e~M©@® will decrease faster than any exponential function
(i.e., a function of the form e~¢*'); thus the test functions ¢(x) which
belong to the space W,,, as well as all their derivatives, decrease at
infinity faster than any exponential function.

It is obvious that W, is a vector space (with the usual operations).
We introduce for this space, the following definition of convergence:
a sequence {p,(x)} is said to converge to zero if the functions ¢,(x) and
all their derivatives converge to zero uniformly on any finite interval
of the x-axis (such convergence is called regular convergence) and in
addition the following inequalities hold:

[ @(x) | < C, e, 5)

where the constants C, and @ do not depend on v.

Let us show that the space W,, can be represented as a union of
countably normed spaces.

We denote by W,, ., the set of all functions from the space W,, which
obey the inequalities

| 9(x) | < C, exp[—M(ax)),



1.1 Definitions 3

where the constant @ can be selected arbitrarily, but smaller than a. In
other words, the space W, , consists of those functions ¢(x) which
satisfy for any & > O the inequalities

|99 | < Copexpl~Ml(a —8)1] (g =0,1,2,..)

We define

M, (x) = exp (M [a (1 - 11)) xD (P = 2,3,..). (6)

The functions M, (x) form an increasing sequence, M (x) < M, ,(x),
and the functions ¢(x) € W, , can be characterized as infinitely differenti-
able functions for which the norm

Fells = sup. M(x) [ ¢(x) | (N
is finite for arbitrary p. This shows that the space W, , coincides with
the space K{M,} defined in Volume 2, Chapter I, Section 1, with
a fixed sequence of weight functions (6). Therefore, all the results
referring to the spaces K{M,} may be applied to the space W,, , . Itis
thus a complete countably normed space with the norms (7). We show
that it is a perfect space. The condition (p), which is sufficient for the
space K{M,} to be perfect (Volume 2, Chapter II, Section 2), consists
in the existence for any p of a number p° > p, such that

lim 225 _

==}
[PIES Mp'(x)

In our case, due to the convexity inequality, we have for any p’ > p
M[a(v] —l)x]—f—M[a(-l— 1,)x]<M[a(l —L,)x],
o I P
and consequently
45 oo~ )
M, (x) exp (M [(l > ax M (l > ax
1 1
< exp (—M[(— — —,—) ax]) — 0,
p P

as required for the proof.
According to the results of Volume 2, Chapter 11, Section 2, a sequence
p(x)e W,, , converges to zero if and only if the sequence ¢/(x) is
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regularly convergent (i.e., the functions ¢'?(x), for any ¢, converge
uniformly to zero on any interval | x | < x, < o) and the norms || ¢, ||,
are bounded for any p.

The union of the spaces W,, , with all indices @ = 1, % ,... obviously
coincides with the space W,, . The convergence to zero in the space W,,,
as described above, is the convergence to zero in one of the spaces Wy, , ,
and thus coincides with the concept of convergence defined in W,,
considered as a union of countably normed spaces.

We now define bounded sets in the space W,,. According to the
general definition of bounded sets in a union of countably normed
spaces, set A C W, i1s said to be bounded, if it is entirely contained
within one of the W, , and is bounded in this space. In other words,
the set 4 C Wy, 1s bounded if all functions ¢(x) € 4 satisfy the inequalities
(4) with the same constants C and a. In particular, a sequence ¢,(x) € W),
converges to zero if (1) it converges to zero regularly, (2) 1t 1s bounded.

Example 1. Let M(x) = «x'~(x >0), with « < 1; then
p(€) = (1/a) £€1/9-1, The corresponding space W, consists of infinitely
differentiable functions ¢(x), satisfying the inequalities

Eq;(ll)(x) I < qu—ajzfl/u

for certain C, and a which depend on ¢. Obviously, this space coincides
with the space S, (Volume 2, Chapter IV, Section 1).

Example 2. Let p(¢) = In(¢ + 1)(¢ = 0); then, for x > 0
M(x) = len(f +1)dE = (x+ Dln(x + 1) — x.

According to the definition, the space W,, consists of the infinitely
differentiable functions ¢(x) which satisfy the inequalities

| @' @() | < Coexp(—a[(i x|+ 1)In(| x|+ 1) — ] %))

In this case the functions ¢(x) admit a simpler description, which
can be obtained by means of the following considerations.

Formally one could have constructed a space W,, starting from any
nonnegative continuous function M(x) (without taking into account
whether this function has the special form (1); later we shall make use
of this special form), by means of the definition (4). In this case, one
may obtain the same space for different functions M (x) and My(x),
W, Wy, - We indicate a simple sufficient condition for this equality

n =
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to hold. Assume that the functions M,(x) and M,(x) satisfy for sufhi-
ciently large x > 0 the inequality

M,(1x) < My(y2x) (8)

with some positive constants y, and y,. Then we can assert that the
inclusion

holds. Indeed, Eq. (8) can be replaced by an inequality, valid for all
values of x > 0, by adding a suitable constant

Mi(y1x) < My(yex) + s -
Hence, if ¢(x) € W, , we have
|9 9(x) | < Cqexp[—My(ax)] < C;' exp[M,(ax)], %)

with @’ = a(y,/y,), C,” = C,e”; thus g€ Wy, .

Moreover, the inequality (9) shows that if the sequence ¢,(x) con-
verges to zero in the sense of W), , it does so also in the sense of W, ,
since one can choose the constants &" and C,” in the inequalities (9)
for the functions ¢/(x) together with the constants @ and C, inde-
pendently of v.

Further, if the functions M (x) and M,(x) are such that for sufficiently
large x > 0

M(y1x) < My(yex) < My(y,'x), (10

then both inclusions W,, O W, and W, O W, hold, and thus
Wy, = Wy, , as sets; it is also obvious that the convergence in W),
coincides with the convergence in W,, . Two functions M,(x) and
M,(x) satisfying the inequality (10) will be called equivalent; we have
seen that equivalent functions define the same space.

The function (x + 1)In(x 4 1) — x, which appears in Example 2,
is equivalent to the function x In x (which does not satisfy the defini-
tion (1)); consequently, the corresponding test function space is also
defined by means of the inequalities

le@(x) | < C,exp(—a|x|Iln|x])

and the corresponding definition of convergence.
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1.2. The Spaces W*

Let w(y) (0 < < o) denote an increasing continuous function
with w(0) — 0, w(o) = oo, for y > 0 we define

Y

Ay) = [ wl)dn (1)

The properties of the function {(y) are entirely analogous to those
of the function M(x), introduced in Section 1.1; in particular, the
convexity inequalities hold:

Q) + 2(y2) < QA + ¥2), (2)
20(y) < Q(2) 3)
We further define
Q(—y) = Ay).

We shall denote by W? the set of all entire analytic functions ¢(z)
(2 = x + 1y), which satisfy the inequalities

| 2”“@(2) | < Cke!?(by) (4)

where the constants C;. and b depend on the function ¢.

It is obvious that W* is a vector space with the usual definitions of
the operations (over the field of complex numbers). We introduce for
this vector space the following definition of convergence: a sequence
@(z) € W2 1s said to converge to zero if the functions ¢,(2) converge
uniformly to zero in any bounded domain of the z-plane (this will be
called regular convergence) and in addition satisfy the inequalities

| 2, (2) | < Cpe2om,

where the constants C;, and b do not depend on the index ».

The space W% can be represented as a union of countably normed
spaces. Indeed, let us denote by W2 the set of those functions in /2
which satisfy the inequalities

| zp(2) | < Cy exp[R(by)],

where b can be any constant larger than b. In other words, the set W%t
consists of those entire functions which for any p > 0 satisfy the ine-
qualities

1zep(2) | < Ci, exp[L{(6 + p)¥])-



