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Preface to the Second Edition

There are three changes in the second edition. First, with the help of readers
and colleagues—thanks to all—I have corrected typographical errors and
made minor changes in substance and style. Second, I have added a few more
Exercises, especially at the end of Chapter 4. Third, I have appended a section
on Differential Geometry, the essential mathematical tool in the study of
two-dimensional structural shells and four-dimensional general relativity.

JaMes G. SIMMONDS
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Preface to the First Edition

When I was an undergraduate, working as a co-op student at North Ameri-
can Aviation, I tried to learn something about tensors. In the Aeronautical
Engineering Department at MIT, I had just finished an introductory course
in classical mechanics that so impressed me that to this day I cannot watch a
plane in flight—especially in a turn—without imaging it bristling with vec-
tors. Near the end of the course the professor showed that, if an airplane is
treated as a rigid body, there arises a mysterious collection of rather simple-
looking integrals called the components of the moment of inertia tensor,
Tensor—what power those two syllables seemed to resonate. I had heard the
word once before, in an aside by a graduate instructor to the cognoscenti in
the front row of a course in strength of materials. “What the book calls stress
is actually a tensor....”

With my interest twice piqued and with time off from fighting the brush-
fires of a demanding curriculum, I was ready for my first serious effort at
self-instruction. In Los Angeles, after several tries, I found a store with a book
on tensor analysis. In my mind I had rehearsed the scene in which a graduate
student or professor, spying me there, would shout, “You’re an under-
graduate. What are you doing looking at a book on tensors?” But luck was
mine: the book had a plain brown dust jacket. Alone in my room, I turned
immediately to the definition of a tensor: “A 2nd order tensor is a collection
of n? objects that transform according to the rule ...” and thence followed an
inscrutable collection of superscripts, subscripts, overbars, and partial deriv-
atives. A pedagogical disaster! Where was the connection with those beauti-
ful, simple, boldfaced symbols, those arrows that I could visualize so well?

I was not to find out until after graduate school. But it is my hope that,
with this book, you, as an undergraduate, may sail beyond that bar on which
I once foundered. You will find that I take nearly three chapters to prepare

ix



X Preface to the First Edition

you for the shock of the tensor transformation formulas. I don’t try to hide
them—they’re the only equations in the book that are boxed. But long be-
fore, about halfway through Chapter 1, I tell you what a 2nd order tensor
really is—a linear operator that sends vectors into vectors. If you apply the
stress tensor to the unit normal to a plane through a point in a body, then
out comes the stress vector, the force/area acting across the plane at that
point. (That the stress vector is linear in the unit normal, i.c., that a stress
tensor even exists, is a gift of nature; nonlinearity is more often the rule.) The
subsequent “débauche des indices” that follows this tidy definition of a 2nd
order tensor is the result of exposing the gears of a machine for grinding out
the workings of a tensor. Abolish the machine and there is no hope of pro-
ducing numerical results except in the simplest of cases.

This book falls into halves: Algebra and Calculus. The first half of the first
half (Chapter 1) emphasizes concepts. Here, 1 have made a special effort to
relate the mathematical and physical notions of a vector. I acknowledge my
debt to Hoffman’s intriguing little book, About Vectors (Dover, 1975). (But
there are points where we differ—I disagree with his contention that vectors
cannot represent finite rotations.) Chapter 2 deals mostly with the index
apparatus necessary to represent and manipulate vectors and tensors in gen-
eral bases. Chapter 3, through the vehicle of Newton’s law of motion, intro-
duces moving frames and the Christoffe] symbols. To help keep the basic
kinematic ideas and their tensor generalizations in mind simultaneously, I list
a number of equations in dual form, a device that I have found successful in
the classroom. The last chapter starts with a homely example of the gradient
and builds to the covariant derivative. Throughout this chapter there are
applications to continuum mechanics. Although the basic equations (exclud-
ing electricity and magnetism) were known by the 1850's, it was only under
the spur of general relativity that tensor analysis began to diffuse into this
older field. (In my own specialty, shell theory, tensor apalysis did not appear
until the early 1940, in the Soviet literature, even though the underlying
theory of surfaces and their tensor description had been central to the under-
standing of general relativity.)

I have provided no systematic lists of grad, div, curl, etc. in various coor-
dinate systems. Such useful information can be found in Magnus, Oberhet-
tinger, and Soni, Formulas and Theorems for the Special Functions of Mathe-
matical Physics, 3rd enlarged edition, Chapter XII, Springer-Verlag 1966; or
in Gradshteyn and Ryzhik, Tables of Integrals, Series and Products, 4th edi-
tion, corrected and enlarged, Academic Press, 1980,

It is a happy thought that much of the drudgery involved in expanding
equations and verifying solutions in specific coordinate systems can now be
done by computers, programmed to do symbol manipulation. The interested
reader should consult “Computer Symbolic Math in Physics Education,” by
D. R. Stoutemyer, Am. J. Phys., vol. 49 (1981), pp. 85-88, or “A Review of
Algebraic Computing in General Relativity,” by R. A. d’Inverno, Chapter 16
of General Relativity and Gravitation, vol. 1, ed. A. Held, Plenum Press, N.Y.
and London, 1980.



Preface to the First Edition xi

I am pleased to acknowledge the help of three friends: Mark Duva, a
former student, who, in his gracious but profound way, let me get away with
nothing in class; Bruce Chartres, who let me filter much of this book through
his fine mind; and Ernst Soudek, who, though not a native speaker, tuned the
final manuscript with his keen ear for English.

Finally, my thanks to Carolyn Duprey and Ruth Nissley, who typed the
original manuscript, and then with patience and good humor, retyped what
must have seemed to be hundreds of petty changes.

JaMmes G. SIMMONDS
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CHAPTER |

Introduction: Vectors
and Tensors

The magic of this theory will hardly fail to impose itself on anybody who has truly
understood it; it represents a genuine triumph of the method of absolute differen-
tial calculus, founded by Gauss, Riemann, Christoffel, Ricci and Levi—Civita.!

This little book is about tensor analysis, as Einstein’s philosophers’ stone,
the absolute differential calculus, is called nowadays. I have written it,
though, with an eye not toward general relativity, but to continuum mechan-
ics, a more modest theory that attempts to predict the gross behavior of “the
masses of matter we see and use from day to day: air, water, earth, flesh,
wood, stone, steel, concrete, glass, rubber, ....”2

Continuum mechanics is a limiting case of general relativity; yet it is best
treated on its own merits. Viewed thus, there is a fundamental difference at
the foundations of the two theories. The geometry of continuum mechanics
is that of three-dimensional Euclidean space (E, for short) and the real line, R.
The geometry of general relativity is that of a four-dimensional Riemannian
manifold. (A sphere is a two-dimensional Riemannian manifold.) To those
who will settle for nothing less than a complete understanding of general
relativity (and who, therefore, will want to consult Gravitation, by Misner,
Thorne, and Wheeler), take heart. From the tools that we shall fashion comes
the gear to scale that pinnacle. And to those content to cultivate the garden
of continuum mechanics, let me say that, embedded within it, are intrinsically

! Albert Einstein, “Contribution to the Theory of General Relativity”, 1915; as quoted and
translated by C. Lanczos in The Einstein Decade, p. 213.

2 Truesdell and Noll, The Non-Linear Field Theories of Mechanics, p. 1. Two outstanding intro-
ductory texts on continuum mechanics are A First Course in Rational Continuum Mechanics, 2nd
ed, by Truesdell and Continuum Mechanics by Chadwick.



2 1. Introduction: Vectors and Tensors

curved two-dimensional continua, called shells, that in dwarf form exhibit
nearly all of the mathematical foliage found in full-flowered general relativity.

In attempting to give mathematical form to the laws of mechanics, we face
a dichotomy. On the one hand, if physical events and entities are to be
quantified, then a (reference) frame and a coordinate system within that frame
must be introduced.® On the other hand, as a frame and coordinates are mere
scaffolding, it should be possible to express the laws of physics in frame- and
coordinate-free form, i.e. in invariant form. Indeed this is the great program
of general relativity.

In continuum mechanics, however, there are exceptional frames called
inertial; Newton’s Law of motion for a particle—force equals mass times
acceleration—holds only in such frames.* A basic concern of continuum
mechanics is therefore how laws such as Newton’s change from one frame to
another.’ Save for Exercise 4.24, we shall not analyze changes of frame.
Rather we shall study how, within a fixed frame, the mathematical represen-
tation of a physical object or law changes when one coordinate system (say
Cartesian) is replaced by another (say spherical).

In what follows, I have assumed that you remember some of the plane and
solid geometry that you once learned and that you have seen a bit of vector
algebra and calculus. For conciseness, I have omitted a number of details
and examples that you can find in texts devoted to vectors. At the same
time I have emphasized several points, especially those concerning the physi-
cal meaning of vector addition and component representation, that are not
found in most conventional texts. The exercises at the end of each chapter are
intended to amplify and to supplement material in the text.

3 A frame is a mathematical representation of a physical apparatus which assigns to cach event
e in the physical world %" a unique place (i.c. point) in E, and & unique instant on the real line
R. I like to imagine an idealized, all-seeing stereographic video camera mounted on 3 rigid,
mutually perpendicular rods. The rods have knife edges that intersect at a point and one of the
rods carries a scratch to fix a unit of length. The 3 knife edges (indefinitely prolonged) are
represented by a right-handed Cartesian reference frame 0xyz in E;, and one instant (arbitrarily
chosen) is taken as the origin of the real line. The exposed tape is a physical realization of a
framing (to usc the terminology of Truesdell, op. cit.), i.e. a map f from % to E; x R.

A coordinate system in a {rame assigns to each place a unique triple of real numbers (u, v, w)
called spatial coordinates and to each instant a unique number ¢ call the time.

4 Inertial frames are also special, but in a different way, in general relativity where frames are
coordinate systems! (and physics is geometry). An inertial frame may be introduced in general
relativity in the same way as a two-dimensional Cartesian coordinate system may be introduced
in an arbitrarily small neighborhood of a point on a sphere.

5 To change frames means, for example, to tape the world with a copy of our super camera. If the
cameras are in relative motion, then the two exposed tapes f and f, will map the same event e
into different places P and P, in E, and into different instants T and T, on R. Of course, the two
sets of knife edges are represented by the same frame Oxyz and the cameras run at the same rate.
This change of frame is a special type of time-dependent map of E, x R into itself that preserves
the distance and clapsed time betwecn two events. When the elapsed time is z¢ro, this transfor-
mation has the same form as a rigid body motion. See Exercise 4.19 and Truesdell, op. cit.



Directed Line Segments 3

Three-Dimensional Euclidean Space

Three-dimensional Euclidean space, E;, may be characterized by a set of
axioms that expresses relationships among primitive, undefined quantities
called points, lines, etc.’ These relationships so closely correspond to the
results of ordinary measurements of distance in the physical world that, until
the appearance of general relativity, it was thought that Euclidean geometry
was the kinematic model of the universe.

Directed Line Segments

Directed line segments, or arrows, are of fundamental importance in Euclid-
ean geometry. Logically, an arrow is an ordered pair of points, (4, B). A is
called the tail of the arrow and B the head. It is customary to represent such
an arrow typographically as AB, and pictorially as a line segment from A4 to
B with an arrow head at B. (To avoid crowding, the arrow head may be
moved towards the center of the segment). Assigning a length to an arrow or
multiplying it by a real number (holding the tail fixed) are precisely defined
operations in E;.

Two arrows are said to be equivalent if one can be brought into coinci-
dence with the other by a parallel translation.” In Fig. 1.1, AB and CD are
equivalent, but neither AB and EF nor 4B and GH are.

The set of all arrows equivalent to a given arrow is called the (geometric)
vector of that arrow and is usually denoted by a symbol such as v. A vector
is an example of an equivalence class and, by convention, a vector is repre-
sented by any one of its arrows.

Equivalence classes are more familiar (and more useful) than you may
realize. Suppose that we wish to carry out, on a computer, exact arithmetic

F H
A C\\\ /
\ ) - G
B
Figure 1.1.

6 This was Hilbert’s program: reduce geometry to a branch of logic. No pictures allowed! See,
for example, the discussion at the end of Eisenhart’s Analytic Geometry. Our approach, however,
shall be informal and visual.

7 A definition that makes no sense on a sphere. Why?
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NSRS

Figure 1.2.

operations on rational numbers. Then, for example, 4 must be read in as the
ordered pair of integers (2, 3). We test for the equivalence of two ordered pairs
of integers (a, b) and (c,d) stored within the computer by checking to see if
ad = bc. In doing so, we are tacitly using the definition of a rational number
a/b as the equivalence class of all ordered pairs of integers (c,d) such that
ad = be.

In practice, it is expedient (and rarely causes problems) to confound a
“number”, such as two-thirds, with its various representations e.g., 2/3, 4/6,
etc. Likewise, we shall be using the term “vector” when we mean one of its
arrows (and vice versa), relying on context for the proper interpretation. Thus
in Fig. 1.2 we call any one of the equivalent arrows “the vector v.”

The length of a vector v is denoted by |v| and defined to be the length of
any one of its arrows. The zero vector, 0, is the unique vector having zero
length. We call the unit vector

v=vflv, v#0, (L)

the direction of v; 0 has no direction.

We may choose, arbitrarily, a point 0 in E, and call it the origin. The vector
x (of the arrow) from 0 to a poiut P is called the position of P. We shall
sometimes write P(x) as shorthand for “the point with position x.”

Addition of Two Vectors

Addition of two vectors u and v may be defined in two equivalent ways.®

A. The Head-to-Tail-Rule (Fig. 1.3a). Take any arrow representing u, say
AB. For this choice there is a unique arrow BC representmg v;utvis
defined to be the vector of the arrow AC. This definition is convenient if one
wishes to add a string of vectors (Exercise 1.1), but commutativity is not
obvious. For reasons of symmetry it may be preferable to use the following.

® The equivalence and uniqueness of the two definitions can be proved from the postulates of
Euclidean geometry.



