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7. Principal Components
Analysis

Similar to EFA, PCA is a commonly used method for data reduction based on
the re-dimensionalization of variables. Although EFA is a measurement
model in which the observed data are modeled as the reflections of unob-
served latent variables plus error (see Section 4), PCA is not strictly speaking
concerned with measurement but is instead focused on data reduction: the
transformation of a large number of observed variables into a smaller number
of relevant latent variables. In PCA the observed variables are modeled as a
straightforward mixture of the latent variables. The first three articles in this
section all contrast PCA explicitly to EFA. Velicer and Jackson (1990) review
the mathematical foundations of both techniques and argue that in practice
the two techniques are broadly similar and largely interchangeable. But
because PCA differs from EFA in its treatment of error, strong, clear compo-
nents in PCA are usually the same as the strong, clear factors that would
result from EFA. Where error predominates, the two techniques can produce
widely divergent results. This is confirmed by Snook and Gorsuch (1989) in
a Monte Carlo study comparing the performance of EFA and CFA in extract-
ing signals in simulated data. With large amounts of data the two techniques
converge. But even then they show that — when the EFA is in fact the true
model - PCA results systematically overestimate factor loadings. Again, given
the fact that PCA models ignore measurement error this is not surprising.
Widaman (1993) is a review and reanalysis of Velicer and Jackson (1990)
and Snook and Gorsuch (1989). Widaman concludes that PCA should not be
used for measurement as such, which again is no surprise given that PCA is
not primarily designed for measurement (even though it is often used for
measurement, in many cases seeming inadvertently). Vyas and Kumaranayake
(2006) apply PCA to household wealth data to produce a socioeconomic
status (SES) variable. It could be argued that EFA or even CFA would have
been more appropriate for this purpose, but the article provides a simple
empirical run-through of how to use the technique.
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Component Analysis versus Common
Factor Analysis: Some Issues in Selecting

an Appropriate Procedure
Wayne F. Velicer and Douglas N. Jackson

procedures that share a common goal: to reduce a set of p observed

variables to a set of m new variables (m < p). This reduction serves two
different purposes. First, the pattern matrix A can be interpreted to describe
the relationship between the original variables and the new variables. Second,
scores for the m new variables can be derived to replace the original observed
scores. These scores can be interpreted or employed as the basis of a subse-
quent analysis. A number of writers have drawn careful distinctions between
these two broad classes of methods. After reviewing the distinctions, most
writers recommend the use of factor analysis. In spite of these recommenda-
tions, principal component analysis, a type of component analysis, remains
the most widely employed of the techniques (Glass & Taylor, 1966; Pruzek &
Rabinowitz, 1981). The purpose of this article is to review some of the issues
involved in the selection of one of these two classes of procedures.

The first section will describe the algebraic similarities and differences at
the sample level. Four issues will then be discussed in the context of the
analysis of data: (a) The degree of similarity between alternative solutions,
(b) issues relating to the number of components retained, (c) problems with
improper solutions in factor analysis, and (d) comparisons with respect to
computational efficiency. Three broader theoretical issues will also be con-
sidered: (a) The factor indeterminacy problem, (b) the distinction between

Factor analysis and component analysis are two broad classes of

Source: Multivariate Behavioral Research, 25(1) (1990): 1-28.



4 Principal Components Analysis

exploratory and confirmatory analysis, and (c) the contrast between latent
and manifest variables. This article will not consider these issue(s) within the
broader context of structural analysis, primarily because the theory is still
developing and the limited number of empirical examples do not provide an
adequate basis for discussing these issues. However, the choice between
methods discussed in this article seems to involve the same issues (Bentler,
1980; Fornell & Bookstein, 1982) that would be involved in selecting between
a factor analysis based approach such as LISREL (Joreskog, 1970, 1978,
1981), EQS (Bentler, 1985) or COSAN (McDonald, 1978, 1980) and a com-
ponent analysis based approach such as the PLS (Partial Least Squares)
approach (Wold, 1966, 1982). It is clear that, at the present time, general
procedures for structural analysis based on the factor analysis model are
better developed and have been employed more extensively.

Algebraic Relations

An examination of the mathematical representations of the two approaches
will serve to highlight the similarities and differences. This section will pre-
sent only a brief description. Readers interested in a more detailed and rigor-
ous derivation are referred to standard texts such as Gorsuch (1983), Lawley
and Maxwell (1971), McDonald (1985), Meredith and Millsap (1985), Mulaik
(1972) or the Schonemann and Steiger (1976) article on component analysis.

The basic problem for both factor analysis and component analysis
involves the description of a set of p random variablesn'= (Y, Y,, .. ., Yp) in
terms of m < p random variable {= (X, X,, . . ., X ) and p residuals ¢’ = (e,
e, ..., e ). Both factor analysis and component analysis can be expressed as

a2model of the form

n=AC+e¢ 1)

where A is the p x m multiple regression pattern for optimally predicting the
p variates in n from the m variates in ¢. In component analysis, { must be
expressable as {=A'n, in which case the variance-covariance matrix of &
cannot be diagonal and of full rank. In factor analysis, the variance-covariance
matrix of ¢ must be diagonal and of full rank.

Alternative methods result in different sample estimates of A, the pattern
matrix. For a sample of size N, the observed data can be represented as an
N x p matrix Y. When Y is expressed in deviation score form, a p X p sample
covariance matrix C can be represented as

C, =YY/(N-1). (2)

Component analysis will be defined as any eigen decomposition of a covari-
ance matrix. The most widely employed version is principal component anal-
ysis where all observed variables are transformed to standard score form and
the covariance matrix is now the p X p matrix of correlations, R.
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Principal component analysis can be expressed as
R =LDL 3)

where D? is an m x m diagonal matrix containing the largest m eigen values and
L_is the p X m matrix containing the corresponding eigen vectors. This approach
is sometimes referred to as truncated principal component analysis, indicating
that for some applications all p components may be retained. Alternatives to
principal component analysis are described by Bartholomew (1984, 1985),
Meredith and Millsap (1985) and Schénemenn and Steiger (1976).

A variation of principal component analysis that has received considera-
ble attention is image component analysis (Guttman, 1953; Harris, 1962),
which can be expressed as

S'RS™ =L DIL; 4)

where L, and D? are the matrices of eigen vectors and values, respectively, and

$*=Diag™' (R™). (5)
The principal component pattern can be expressed as
A =LD, (6)
and the image component pattern can be expressed as
A =SLD, (7)

Factor analysis, as we have seen, can be viewed as a linear model relating
manifest and (using the term loosely) latent variables with an important
constraint on the variance-covariance structure of the latent variables.
However, this version of the factor model fits a given n if and only if the
variance-covariance matrix of the n variables may be written in the form

S, =AA + U2 (8)
Consequently, an alternative view of the factor analysis model is available.
Specifically, the factor model fits 1 if and only if there exists a positive defi-
nite, diagonal matrix U? which, when subtracted from 3, = leaves a residual
that is Gramian and of rank m.

Regardless of whether or not the factor model fits 3, . in the population
for a small number of factors, it is a virtual certainty t'i'lat it will not fit a
sample variance-covariance matrix C, perfectly. Hence, when working with
a sample variance-covariance matrix, we fit the model

CW=AA’+U2+E %

where E is to be kept as small as possible by choosing A and U? to minimize
a loss-function. Different loss-functions yield different solutions, which often
are subsumed under the generic name common factor analysis. Maximum
Likelihood Factor Analysis (MLFA), which results when A and U? are chosen
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to minimize the maximum likelihood loss function, will be considered as the
exemplar of this approach. Alternative derivations from different rationale
have produced the same results (Howe, 1955: Lawley, 1940, 1941; Rao,
1955) and comparative studies (Browne, 1968) support this preference. If
the diagonality constraint (A’'U-2A = Diagonal) is employed for MLFA, the
result can be expressed as an eigen decomposition

U'RU =L DL, (10)

where L, and D? are the matrices containing, respectively, the eigen vectors
and eigen values, and the corresponding factor pattern can be represented as

A, =UL.(D? -D"%. 11D

An examination of the two methods of analysis will demonstrate that they
differ only to the extent that factor analysis involves a reduction of the vari-
ance or diagonal elements of the covariance matrix. Component analysis per-
mits no operation on the diagonal elements that will not also affect the
covariance or off-diagonal elements. It should be noted that the values of U?
are typically unknown and must be estimated from the data. Estimation in
factor analysis always employs an iterative procedure where U? is estimated by
a numerical minimization algorithm, while A is estimated in closed form at
each value of U? found by the algorithm. The procedure continues until con-
vergence occurs. The presence of the U? matrix is also the source of the inde-
terminacy problem (Mulaik & McDonald, 1978; Steiger & Schonemann, 1978).
The extent to which the algebraic differences in the two approaches result in
practical differences in the solutions will be discussed in the next section.

Similarity of Solutions

An examination of the algebraic representations of the two methods of anal-
ysis has served to highlight the differences between them. However, when
the same number of components or factors are extracted, the results from
different types of component or factor analysis procedures typically yield
highly similar results. Discrepancies are rarely, if ever, of any practical impor-
tance in subsequent interpretations.

The comparisons have either focused on the similarity between the
derived scores produced by the two approaches or the similarity between the
patterns produced by the two methods. Studies have involved both real data
examples and artificial data sets.

Velicer (1976b) calculated the correlation between image component
scores, principal component scores, and three alternative estimates of factor
scores. Data from nine well known studies were employed. The correlations
between the different types of scores were typically close to unity. More
recently, Fava and Velicer (in press) confirmed these results in an extensive
simulation study. The use of simulated data permitted a systematic variation
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of the degree of saturation, the sample size, and the population structure
underlying the sample correlation matrix. When the components/factors are
well defined, that is, an adequate number of variables possessing at least a
moderate loading (.60), the correlation between the alternative types of
scores typically exceeded .99. The only exceptions occurred in the poorly
defined cases, a combination of low loadings and few variables per compo-
nent, and even in these cases the correlations typically exceeded .90.

Velicer (1977) employed the same nine data sets in a comparison of
image component, principal component, and factor patterns. The patterns
were compared after a varimax rotation, after a promax rotation, and after a
procrustes rotation to maximum similarity. Two types of comparisons were
performed: a direct loading-by-loading comparison of the patterns and a
summary statistic defined on the matrix of differences between the patterns.
Velicer concluded that the “. . . patterns produced by each of the three meth-
ods are remarkably similar. Rotation position has little effect on the degree of
similarity” (p. 20).

Velicer, Peacock, and Jackson (1982) performed an extensive comparison
of component, image, and factor patterns using simulated data sets. Under
all conditions, the patterns produced by all three methods were highly simi-
lar, typically with differences only in the second decimal of the loadings. The
degree of similarity increased as sample size and saturation increased. In
other words, improvements in the quality of the data increased the degree of
similarity.

This similarity is easily illustrated. Following the procedure described by
Velicer et al. (1982), a target pattern was used to construct a population cor-
relation matrix. A sample correlation matrix (N=108), generated by the
Montanelli (1975) program, was analyzed by principal component analysis,
image component analysis, and maximum likelihood factor analysis. Table 1
presents the target pattern and the pattern produced by each of the three
methods.

An examination of Table 1 will illustrate the high degree of similarity
between the three patterns. Although empirical studies generally show that
image and principal component analysis are slightly more similar to each
other than to factor analysis, and Velicer et al. (1982) found that factor anal-
ysis fits better to the factor target and component analysis fits better to com-
ponent target, these differences are so small as to be of no practical
importance.

A somewhat different conclusion was reached by Snook and Gorsuch
(1989). On the basis of a simulation study, they concluded that component
and factor analysis give discrepant solutions, particularly when the number
of variables (p) is small. The component analysis loadings are described as
systematically inflated. We view their conclusions as incorrect for two rea-
sons. First, the differences in the numeric size of the loadings was what
would be expected on the basis of the algebraic differences described in the
previous section. In effect, the equivalence of the unique variance of one
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Table 1: Target pattern and sample patterns from three methods

Target pattern Varimax rotated MLFA pattern
1 2 3 4 5 6 1 2 3 4 5 6
1 .80 .00 .00 .00 .00 .00 83 -05 .02 -13 -07 -01
2 .80 .00 .00 .00 .00 .00 J8 -7 .02 .01 =01 .04
3 .80 .00 .00 .00 .00 .00 9 -09 -00 -06 -.09 .07
4 .80 .00 .00 .00 .00 00 J7 .08 A7 =12 =15 .04
5 .80 .00 .00 .00 .00 00 82 -.01 J0 =11 -06 -.04
6 .80 .00 .00 .00 .00 00 82 -02 .07 -03 -.04 .09
7 .00 .80 .00 .00 .00 00 -.04 81 16 .02 -05 .07
8 .00 .80 .00 .00 .00 00 -.06 79 03 -06 -03 11
9 .00 .80 .00 .00 .00 00 -.04 .86 .01 .01 .05 -.00
10 .00 .80 .00 .00 .00 00 -.08 79 .04 .05 .10 15
1 .00 .80 .00 00 00 00 .01 82 -.03 .03 -.01 .06
12 .00 .80 .00 00 .00 00 -.05 9 -.02 .02 .04 -.05
13 .00 .00 .80 00 .00 00 09 -.05 76 .09 .05 .05
14 .00 .00 .80 00 .00 00 .08 .04 .81 .06 .00 .03
15 .00 .00 .80 .00 .00 00 .04 .00 84 .08 .05 -.04
16 .00 .00 .80 .00 .00 00 .04 A3 79 .09 .06 -.05
17 .00 .00 .80 .00 00 00 .07 .06 .78 a2 .03 .00
18 .00 .00 .80 .00 .00 00 04 -03 82 .02 .03 .07
19 .00 .00 00 .80 .00 00 -16 03 -07 79 d4 0 -2
20 .00 .00 00 .80 .00 00 -13 06  -13 .80 .01 .02
21 .00 .00 00 .80 .00 00 -.04 02 -.02 80 .03 -.09
22 .00 .00 .00 .80 .00 .00 05 -.01 .00 79 02 -.09
23 .00 .00 .00 .80 .00 00 -13 -.05 .07 81 05 =10
24 .00 .00 00 .80 .00 00 -.05 .03  -.03 79 .04 -.03
25 .00 .00 00 .00 .80 00 -.01 nE .05 10 93 -01
26 .00 .00 .00 .00 .80 00 -09 -.02 .03 .08 .80 .02
27 .00 .00 .00 .00 .80 00 -12 -.02 02 -.05 82 .06
28 .00 .00 .00 .00 .80 00 -07 .09 -01 -15 75 .07
29 .00 .00 .00 .00 .80 00 -14 -04 -01 .03 .80 -.00
30 .00 .00 .00 .00 .80 00 03 -.01 .08 -.04 .81 .07
31 .00 .00 .00 .00 00 .80 01  -02 .05 .00 A2 16
32 .00 .00 .00 .00 00 .80 07 -02 -09 .03 .03 29
33 .00 .00 .00 .00 00 .80 .06 12 .08 -.06 .03 29
34 .00 .00 .00 .00 00 .80 .03 12 -07  -19 .03 76
35 .00 .00 .00 .00 00 .80 .07 .10 J0 -2 .03 81
36 .00 .00 .00 .00 00 .80 .07 10 09 -12 .04 81
Varimax rotated PCA pattern Varimax rotated ICA pattern
1 2 3 4 5 6 1 2 3 4 5 6
1 85 -.04 02 -12 -06 -.01 86 -.04 02 -12 -06 -.01
2 82 -17 .01 .02 -.01 .04 80 -.16 .01 01 =01 04
3 82 -09 -00 -05 -.08 .08 82 -0 -00 -05 -.08 .08
4 .80 .08 A7 =12 -.14 .04 29 .07 a7 -1 -.14 .04
5 84 -.00 .09 -10 -06 -.04 86 -.00 Jo  -10 -06 -.04
6 85 -.01 .06 -03 -.03 .08 85 -0 06 -02 -.03 .09
7 -03 .83 16 .02 -.05 .07 -.03 .84 16 .02 -.06 .07
8 -.05 .82 .02 -06 -.02 A1 -05 .82 .02 -06 -.03 1
9 -.03 87 .00 .00 .05 =-00 -.04 .88 .00 .00 .05 -.00
10 -.08 .82 .03 .05 .09 15 -.08 .82 .03 .05 10 15
1 .01 .84 -.03 02 -01 .06 .01 .84 -03 .02 -.00 .05
12 -.05 82 -.02 .01 .04 -06 -.04 .81  -.02 .01 .04 -05
13 09 -.04 .80 .09 .05 .05 09 -.04 .80 .09 .05 .05
14 .07 .03 .84 .06 .00 .03 .07 .03 .83 .06 .00 .03
15 .03 .00 86 -.08 .05 -.04 .03 .00 86 -.08 .05 -.04
16 .03 A3 .82 -.09 .06 -.06 .03 a3 82 -.09 .06 -.06
17 .06 .05 81 -T2 .02 .01 .06 .06 81 =12 .02 .00
18 03  -.02 .84 -02 -03 .08 03 -03 86 -02 -03 .08
19 -15 .02 -.06 81 -15 -12 -15 .02 -.06 81 -15  -12
20 -12 .05 -13 83 -.01 .03 -12 .05 -13 82 -0 .03
21 -.03 .01 -.02 .83 .03 -09 -03 .01 -.02 94 .03 .05
22 .05 -.01 -.00 83 .02 -.09 05 -01 -.00 .82 .02 -.05
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Varimax rotated PCA pattern Varimax rotated ICA pattern
1 2 3 4 5 [ 1 2 3 4 5 6

23 -13  -.05 .07 84 -05 -10 -13 -04 -07 84 -05 -10
24 -.04 03 -02 83 04 -93 -04 02 -.02 82 04  -.03
25  -.00 1 .05 10 86 -.01 .00 Nh .05 11
26 -.08 -.02 .02 -07 83 02 -08 -.02 .02 -07
27 -1 -.01 .02 -05 85 06 =11 -.02 .02 -.05
28 -.07 09 -0 -.05 80 07 =07 08 -00 -05
29 -14 -04 -.00 02 83 -00 -14 -04 -01 .02
30 03 -0 07 -03 85 .07 03 -0 .07 =03
31 .00 -.02 .04 .00 12 .00 -.02 .04 .00
32 .07 -.01 -.09 .04 -.04 .07 -01 -09 .03
33 .06 A2 .08 -.04 .03 .06 a2 .07 -.05
34 .02 1 -.07 -19 .03 .02 a1 -07  -19
35 .06 .10 09 -1 .03 .07 10 09 -1
36 -.03 .04 .02 -1 .03 -.03 .04 02 -1

22852k

kR

variable must be included in forming the linear composite for a component
analysis. A numeric example from Velicer et al. (1982) will serve to illustrate
this. “Consider the case of six variables which all have loadings of .80 on a
factor. The total common variance for the set is 3.84 and the unique variance
is 2.16. The unique variance of one variable (.36) is added to the common
variance for component analysis, for a total of 4.20. Divided among the six
variables, this results in a loading for each of the six variables in component
analysis of .837.” (p. 387) This is the source of the differences reported by
Snook and Gorsuch and the differences are, as expected, greater for small
variable problems. However, there is no reason to believe that differences of
the magnitude reported have any effect in practice on conclusions regarding
which factor loadings are salient.

Second, the use of the word inflated is perjorative and misleading. It
involves the implicit assumption that the factor loading is the correct value. It
would be equally appropriate but similarly misleading to describe the factor
loadings as deflated. A more appropriate procedure for assessing the stability of
results under small variable conditions would be to compare each sample pat-
tern to its corresponding population pattern, a procedure followed by Velicer
and Fava (1987, 1990) which resulted in a very different set of conclusions.

In any case, it does not seem appropriate to select a procedure on the
basis of the very small differences in the numeric values of the loadings.
There is no reason to believe that the differences reported will result in dif-
ferences in interpretation for the patterns. Arguments that the slightly larger
loading are better or worse are not likely to convince anyone. None of the
studies provide support for the persistent belief that the methods produce
highly discrepant solutions. One explanation for the possible source of dis-
crepant solutions may lie in the area of overestimation of the number of
components, a topic that is discussed in the next section.
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Number of Components (Factors) Retained

An area that has received too little attention is the determination of the
number of components or factors to retain. Rigorous and accurate proce-
dures for determining the number of factors are now available, but inaccu-
rate procedures are still widely employed. If factor analysis is the procedure
of choice, at least one of the following three situations is assumed to exist:
(a) The number of factors is known a priori, (b) the asymptotic chi-square
statistic will accurately determine how many factors to retain, or (c) the
problem is trivial and of no interest. For component analysis a diversity of
alternative procedures have been proposed, including Bartlett’s (1950, 1951)
test of the equality of the last p—m eigen values, Cattell’s (1966) scree proce-
dure, Horn’s (1965) parallel analysis procedure, Jackson and Morf’s (1973)
approach to the reliability of components, Kaiser’s (1960) eigen value greater
than unity rule, and Velicer’s (1976a) minimum average partial (MAP) cor-
relation procedure. The most widely employed of these is the Kaiser crite-
rion. Indeed, some critics (Comrey, 1978) of component analysis assume that
principal component analysis implicitly involves the use of the Kaiser rule.

The Kaiser rule has been criticized for retaining too many components
(Browne, 1968; Cattell & Jaspers, 1967; Linn, 1968) and by one investigator,
for retaining too few (Humphreys, 1964). Cliff (1988) has questioned the
justification for this rule. Recent investigations of the accuracy of alternative
methods for determining the number of components (Hakstian, Rogers, &
Cattell, 1982; Zwick & Velicer, 1982, 1986) found that the Kaiser rule was
the least accurate of the procedures studied. Typically, the number of compo-
nents retained equalled one third of the number of original variables as
determined by the Kaiser rule, irrespective of the actual number of compo-
nents underlying the sample (Revelle & Rocklin, 1979; Zwick & Velicer, 1982;
1986). Because the Kaiser rule is the default value in most computer pro-
grams, overextraction has been a typical problem in many published studies.
However, the problem of overextraction has received little attention.

Possibly the problem of overextraction has received little attention
because of the advice given by textbooks in the area, ranging from the early
work of Thurstone (1947) four decades ago to more recent references such
as that of Cattell (1978), that overextraction is not a problem, only underex-
traction. Comrey (1978) recently took issue with this viewpoint, pointing out
that overextraction followed by a varimax rotation will result in the last
retained factors being inappropriately inflated at the expense of the earlier
major factors, thus distorting the interpretation. In essence, unreplicable fac-
tors are created by degrading well-defined factors.

The number of components question may be related to the conflict over
the similarity-dissimilarity of factor analysis and component analysis solu-
tions. Dziuban and Harris (1973) found large differences between the pat-
terns produced by alternative methods. The Kaiser rule was employed and



