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SOLID MECHANICS AND ITS APPLICATIONS
Volume 177

Series Editor: G.M.L. GLADWELL
Department of Civil Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?
The aim of this series is to provide lucid accounts written by authoritative research-
ers giving vision and insight in answering these questions on the subject of mech-
anics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it in-
cludes the foundation of mechanics; variational formulations; computational mech-
anics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of
solids and structures; dynamical systems and chaos; the theories of elasticity, plas-
ticity and viscoelasticity; composite materials; rods, beams, shells and membranes;
structural control and stability; soils, rocks and geomechanics; fracture; tribology;
experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are
monographs defining the current state of the field; others are accessible to final year
undergraduates; but essentially the emphasis is on readability and clarity.

For other titles published in this series, go to
www.springer.com/series/6557



Preface

This book presents mathematical descriptions of behavior of crystalline
solids following theoretical methods of modern continuum mechanics.
Emphasis is placed on geometrically nonlinear descriptions, i.e., finite or
large deformations. Topics include elasticity, plasticity, and ways of rep-
resenting effects of distributions of defects or flaws in the solid on the ma-
terial’s thermomechanical response. Defects may include crystal disloca-
tions, point defects such as vacancies or interstitial atoms, rotational
defects, deformation twins, voids or pores, and micro-cracks. Representa-
tive substances towards which modeling techniques forwarded here may
be applied are single crystalline and polycrystalline metals and alloys, ce-
ramics, minerals, and other geologic materials and their constituents.

An early and substantial part of the text is devoted to kinematics of fi-
nite deformations, multiplicative inelasticity, and representations of lattice
defects in a differential-geometric setting. An accurate depiction of kine-
matics is deemed necessary in order to accompany rigorous models of
thermodynamics and kinetics of material behavior, since kinematic as-
sumptions tend to enter, implicitly or explicitly, subsequent thermody-
namic and kinetic relations. Descriptions and derivations of fundamental
mechanical and thermodynamic balance laws and inequalities are then
given. Constitutive frameworks are provided for representing thermome-
chanical behaviors of various classes of crystalline materials: elastic solids,
elastic-plastic solids, generalized inelastic solids with lattice defects, and
dielectric solids. In each case, material responses corresponding to large
deformations are emphasized, though complementary geometrically linear
theories are included in some cases for completeness and for comparison
with their nonlinear counterparts. General kinetic concepts are described,
but relatively less attention is directed towards development of specific ki-
netic relations, since these tend to be more strongly dependent upon micro-
structures of particular materials (e.g., crystal structure or chemical com-
position) within each general class of materials considered. Appendices
provide supporting discussion on crystal symmetry and material coeffi-
cients, atomistic methods (i.e., lattice statics and origins of stress and elas-
tic coefficients), and elastic models of discrete line and point defects in
crystals. The content of this book consists of a combination of the author’s
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interpretation and consolidation of existing science from historic and more
recent literature, as well as a number of novel—and sometimes less con-
ventional—theoretical modeling concepts, the latter often presented, de-
veloped, or refined by the author (and collaborators in many cases) in a
number of archival publications over the past ten years. With a few excep-
tions, the text is written in the context of generalized (e.g., curvilinear) co-
ordinates, a rarity among other recent texts and monographs dealing with
similar subject matter.

This book is intended for use by scientists and engineers involved in ad-
vanced constitutive modeling of nonlinear mechanical behavior of crystal-
line materials. Knowledge of fundamentals of continuum mechanics and
tensor calculus is a prerequisite for accessing much of the material in the
text. The book could conceivably be used as supplemental material in
graduate-level courses in continuum mechanics, elasticity, plasticity, mi-
cromechanics, or dislocation mechanics, for students in various disciplines
of engineering, materials science, applied mathematics, or condensed mat-
ter physics.

A number of individuals have contributed, directly or indirectly, to the
content or production of this work; a number have suggested specific
changes to early drafts resulting in significant overall improvement to the
final manuscript. Technical discussions, interactions, and/or close collabo-
rations with the following individuals over the past decade are gratefully
acknowledged (in alphabetical order): Doug Bammann, Peter Chung,
Datta Dandekar, Misha Grinfeld, Jarek Knap, Dave McDowell, Rich
Regueiro, Mike Scheidler, and Tim Wright. However, any technical in-
consistencies, unjust omissions, or errors that may remain are entirely my
own. [ also appreciate support and resources of the U.S. Army Research
Laboratory (formerly known as U.S. Army Ballistics Research Laborato-
ries), including a diligent library staff that was able to efficiently provide
or obtain a number of historical works referenced in this text. Finally, I
am most appreciative of my wife and daughter, who have remained sup-
portive and patient during the many hours | have spent working on this
book over the past 3% years.

John D. Clayton
Aberdeen, Maryland, USA
2010
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1 Introduction

1.1 Objectives and Scope

This book presents modeling techniques, primarily from the standpoint of
modern continuum mechanics, for describing the nonlinear response of
crystalline solids subjected to mechanical loading or deformation. This re-
sponse may be deformation induced by applied loading, or the forces re-
quired to induce such deformation. Nonlinearity may emerge in the geo-
metric sense, pertaining to finite deformations, and/or in the material
sense, pertaining to nonlinear relationships among independent and de-
pendent state variables, for example relationships between strain and
stress. Though mechanical behavior is of primary interest in this book,
thermodynamic principles are exercised for developing descriptions of ma-
terial behavior also dependent on temperature and internal state variables
and consistent with known balance laws or inequalities such as conserva-
tion of energy and production of entropy.

Though some physical and mathematical principles applicable towards
descriptions of all kinds of materials are supplied in early Chapters, the
content of this book is primarily focused on crystalline solids. A crystal
refers to a body whose atoms occupy an ordered, repeating structure called
a lattice. Defects in the crystal may disrupt the regularity of the lattice,
and certain types of point, line, and surface defects are addressed explicitly
in this book. A body with defects is still considered here to be crystalline
so long as a large percentage of its atoms maintain a repeating, ordered
structure. In various instances throughout the text, single- or polycrystal-
line materials are considered, as are homogeneous and heterogeneous sol-
ids. In a single crystal, the lattice is for the most part aligned in a uniform
orientation, whereas a polycrystal consists of multiple single crystals or
grains aligned in potentially different directions, with constituent crystals
separated by grain boundaries. Heterogeneous materials exhibit spatial
variations in material properties, for example composites consisting of dif-
ferent phases with different chemical compositions or different crystal
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2 1 Introduction

structures.  Specific examples of heterogeneous solids include metal-
matrix composites and geologic and cementious materials with several
crystalline constituents, e.g., minerals of various crystal structures. In con-
trast, single crystals are conventionally idealized as homogeneous, at least
when their defect content is low. During the course of deformation or a
change in environment, initially homogeneous single crystals can become
heterogeneous. For example, misoriented subgranular regions can emerge
within metallic crystals deformed plastically to large strains.

Detailed consideration of material nonlinearity requires a description of
microstructure and defects in the solid, including effects of such defects on
kinematics of deformation and on the thermodynamic state of the material.
Furthermore, kinetic relations are often required to dictate the temporal
evolution of defect distributions and to account for their motions and dissi-
pated energy during time-dependent problems. Defects considered explic-
itly in this text include distributions of dislocations, rotational line defects,
deformation twins, vacancies, and voids.

Chapter 2 provides mathematical background used subsequently
throughout the text. Chapter 2 begins with a description of general curvi-
linear coordinates and related definitions from differential geometry and
tensor algebra on manifolds. Such definitions emerge frequently later in
presentations of theories of continuously distributed lattice defects. A
thorough treatment of the deformation gradient, a fundamental kinematic
variable used in continuum mechanical descriptions of constitutive behav-
ior, is provided. This treatment includes discussion of push-forward and
pull-back operations, useful identities associated with the deformation gra-
dient, and deformation measures derived from it. Chapter 2 also presents
two identities from tensor calculus used often later in the text: Gauss’s
theorem—a particular version of which is often called the divergence theo-
rem—and Stokes’s theorem. Compatibility conditions for finite deforma-
tion are discussed, and anholonomic spaces are introduced.

Chapter 3 focuses on descriptions of deformation kinematics of crystal-
line bodies. This Chapter begins with the fundamental hypothesis of
Cauchy and Born describing homogeneous deformations of Bravais lattice
vectors and basis vectors comprising the structure of a perfect crystal.
Kinematics of multiplicative inelasticity is then considered. The interme-
diate configuration that emerges under the assumption of multiplicative de-
formation gradient kinematics is addressed from a general geometric point
of view, regardless of the physical origin of inelastic response. Then par-
ticular physical sources of non-recoverable deformation are treated in vari-
ous kinematic descriptions. These include dislocation-based large defor-
mation plasticity of single- and polycrystalline materials, generation and
motion of point defects, porosity evolution, and sources of residual elastic
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deformation of the lattice emerging from multiscale considerations. Chap-
ter 3 then addresses generalized continua embedded with additional kine-
matic degrees of freedom that describe spatial gradients of deformation of
lattice director vectors, whereby locally inhomogeneous deformations can
often be associated with the presence of lattice defects. These additional
degrees of freedom are introduced in the differential-geometric context of
a linear connection on a spatial manifold whose tangent bundle is spanned
by a field of deformed director vectors. Geometric properties of the con-
nection enable physical characterization of deformation incompatibilities
resulting from continuous distributions of line and point defects.

Chapter 4 features general, traditional thermodynamic relationships and
balance laws governing nonlinear behaviors of continuous bodies. The
discussion begins with presentation of traditional mass, momentum, and
energy balances. Mappings of balance equations among configurations or
deformation states are given. Thermodynamic potentials are defined. The
internal state variable concept is introduced, enabling representation of ef-
fects of defects or evolving microstructure in the description of the ther-
modynamic state of the material. The dissipation inequality is presented,
followed by a brief introduction to kinetic relations and dissipation poten-
tials. Governing equations for generalized continua supporting higher-
order stresses (e.g., couple stresses) and those incorporating electrome-
chanical effects are addressed on a case-by-case basis in later Chapters.

Chapter 5 considers elastically deforming solids, a description most ap-
plicable to defect-free crystals or to those wherein any effects of defects
are not considered explicitly. Constitutive functions and thermodynamic
relationships are presented for crystals displaying a hyperelastic response
with temperature changes. Thermoelastic material coefficients pertinent to
arbitrary three-dimensional stress states, and then those specifically appli-
cable to (but not always limited to) spherical stress states, are defined or
derived. Reductions of the general theory of nonlinear anisotropic ther-
moelasticity under conditions of material linearity, geometric linearity, and
isotropic symmetry are described. A thorough presentation of symmetry
operations, anisotropy, and material coefficients for all thirty-two crystal
classes is provided as supplementary supporting material in Appendix A.
An alternative version of finite elasticity with explicitly delineated me-
chanical and thermal deformations is then developed. Next, Lagrangian
field theory of elasticity is presented, wherein governing equations are de-
duced from Hamilton’s principle. Chapter 5 concludes with a discussion
of second-grade hyperelasticity, a kind of generalized continuum theory.

Chapter 6 deals with elastoplastic materials. The kinematic description
consists of a multiplicative decomposition of the deformation gradient into
two terms: the lattice-altering thermoelastic deformation associated with



